Cycloadditions of 1-aza-2-azoniaallene cations to isothiocyanates

Abdel-Rahman B.A. El-Gazzar, ${ }^{b}$ Kirsten Scholten, ${ }^{a}$ Yiping Guo, ${ }^{a}$ Kerstin Weißenbach, ${ }^{a}$
Martin G. Hitzler, ${ }^{a}$ Gerhard Roth, ${ }^{a}$ Helmut Fischer ${ }^{a}$ and Johannes C. Jochims *a
${ }^{a}$ Fakultät für Chemie der Universität Konstanz, Postfach 78457, D-78434 Konstanz, Germany. E-Mail: Johannes.Jochims@uni-konstanz.de
${ }^{b}$ National Research Centre, Cairo, Egypt

Received (in Cambridge) 29th March 1999, Accepted 18th May 1999

Isothiocyanates react as S-nucleophiles with 1-aza-2-azoniaallene salts $\mathbf{1}$ to give different types of 1,3,4-thiadiazolium salts $(\mathbf{9}, \mathbf{1 1}, \mathbf{1 2})$ and $1,2,4$-triazolium salts (10). Which product is formed, depends on the one hand on the ability of a substituent of the heteroallene salt $\mathbf{1}$ to undergo a [1,2] shift as a positively charged migrant (generalized WagnerMeerwein rearrangement) or to act as a cationic leaving group, and on the other hand on Dimroth rearrangement of the initially formed thiadiazolium salt $\mathbf{8}$ to triazolium salts. The structures of the thiadiazolium salt $\mathbf{9 c}$ and the triazolium salt 10d were confirmed by X-ray structural analyses.

Introduction

While 1,3-dipolar cycloadditions of neutral 1,3-dipoles are widely used in preparative organic chemistry, ${ }^{1}$ reports on cycloadditions of cationic four-electron-three-center components to multiple bonds are scarce. Interesting inorganic examples of such " 1,3 -dipolar cycloadditions with reverse electron demand" have been reported for certain sulfur-nitrogen compounds. ${ }^{2-5}$ For instance, the ion $\mathrm{S}=\mathrm{N}^{+}=\mathrm{S}$ behaves as a $1,3-$ dipole undergoing cycloadditions to alkynes, alkenes and nitriles. In contrast, the economically important nitronium ion $\mathrm{O}=\mathrm{N}^{+}=\mathrm{O}$ acts as a strong electrophile effecting, for example, aromatic nitration.

Recently, we reported preparations of azoniaallene salts as reactive intermediates, among others of 1-aza-2-azoniaallene salts $\mathbf{1}$ and of 1,3-diaza-2-azoniaallene salts $\mathbf{2}$. These salts react as four-electron-three-center components in cycloadditions with many types of multiple bonds (Scheme 1). ${ }^{6-8}$

1
1-aza-2-azoniaallene salt

2
1,3-diaza-2-azoniaallene salt
$\mathrm{A}=\mathrm{B}:$ carbodiimides nitriles, isocyanates, alkenes, alkynes

$\mathrm{A}=\mathrm{B}:$ alkenes, alkynes, cyanamides

Scheme 1 Cycloadditions of 2-azoniaallene cations.
Cations 1 and 2 undergo cycloadditions to electron-rich alkenes with complete retention of configuration of the alkene. ${ }^{7-9}$ This led us to assume that additions of cations $\mathbf{1}$ and $\mathbf{2}$ to alkenes and alkynes are concerted reactions, a view which is supported by semi-empirical AM1 calculations. However, cycloadditions of cations $\mathbf{1}$ and 2 to the triple bond of nitriles are most likely two-step processes with nitrilium ions as intermediates. ${ }^{10}$ Likewise, according to AM1 calculations, cycloadditions of heteroallenes $\mathbf{1}$ to carbodiimides ${ }^{11}$ and isocyanates ${ }^{12}$ (Scheme 2) should proceed in two steps.

1

Scheme 2 Cycloadditions of isocyanates to 1-aza-2-azoniaallene salts 1. ${ }^{12}$

Not all types of multiple bonds react with 2-azoniaallenes 1, 2. For example, no reactions could be induced between sulfinylamines $\mathrm{RN}=\mathrm{S}=\mathrm{O}$ and cations $\mathbf{1 , 2}$. No products could be isolated from reactions of compounds $\mathbf{1 , 2}$ with carbonyl compounds (aldehydes, ketones, carboxamides). Azomethines add as N -nucleophiles to the carbon atom of the $\mathrm{C}=\mathrm{N}^{+}=\mathrm{N}$ unit of cations 1 with formation of rather sensitive iminium salts. ${ }^{13}$

Recently, we reported syntheses of 2,5 - and 2,3-dihydro-2-(glucosylimino)-1,3,4-thiadiazoles formed by reaction of a glucosyl isothiocyanate with certain salts $\mathbf{1} .{ }^{14}$ Furthermore, 2,3-dihydro-2-(iminoalkyl)-1,3,4-thiadiazolium salts were produced by cycloadditions of a 1-aza-2-azoniaallene salt derived from camphor with isothiocyanates. ${ }^{15}$ However, it soon turned out that reactions of heteroallenes $\mathbf{1}$ with isothiocyanates can lead to different products depending on the substitution pattern of cation 1. Here we report the results of a more systematic investigation of reactions of cations 1 with isothiocyanates R-NCS.

Results and discussion

1-Aza-2-azoniaallene salts $\mathbf{1}$ were prepared as reactive intermediates by treating (1-chloroalkyl)azo compounds $\mathbf{6}^{16}$ at low temperature $\left(-60{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with antimony pentachloride (Scheme 3). ${ }^{8}$ In the presence of an isothiocyanate a colour change between $-60^{\circ} \mathrm{C}$ and $+23^{\circ} \mathrm{C}$ of the orange suspension of the heteroallene $\mathbf{1}$ indicated a reaction. In all cases a single product was isolated in good yield and purity. No limitations

Scheme 3 Reagents and conditions (yields after recrystallization): i, $\mathrm{SbCl}_{5},-60^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ ii, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $23{ }^{\circ} \mathrm{C}, 130 \mathrm{~min}$; iii, $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O} ; 9 \mathrm{a}$ 82%, 9b 76%, $\mathbf{9 c} 86 \%$, 10d 66%, 10e 50%, 10f 55%, 10g 47%, 10h 65%, 10i 44%, 10j 87%, 11b 50%, 11k 56%, 11'k 57%, 111 80%, 11'l 66%, 11m 63%, 11'm 66%, 11n 66%, 11'n 87%, 11o 39%, 11'o 66%, 11p 74%, 11'p 86% (picrate), 11q 49%, 11'q 77% (picrate), 11r 41%, 11s 36%, 11's 72%, 11t 36%, 12u 59%, 12'u 89%, 12v (三12u) 56%, 12w 42%, 12'w 58%, 12x 48%, 12y ($(\mathbf{1 2 u}$) 79%, 12z 55%, 12'z 96%, 12aa 89%, 12'aa 85%, 12ab ($\equiv \mathbf{1 2 w}$) 57%, 12ac 54%, 12ad 71 $\%$.
could be found for the reaction of 1-aza-2-azoniaallene salts $\mathbf{1}$ with isothiocyanates.

Concerted cycloadditions to isothiocyanates are known to occur both on the $\mathrm{C}=\mathrm{S}$ and the $\mathrm{C}=\mathrm{N}$ bonds in a competitive manner. ${ }^{17}$ However, according to AM1 calculations, cycloadditions of heteroallenes $\mathbf{1}$ to isothiocyanates seem to be $t w o$ step reactions with nitrilium ions 7 as intermediates (Schemes 2, 3). While isocyanates act as N -nucleophiles towards heteroallenes 1 furnishing 1,2,4-triazolium salts $\mathbf{4}$ or 5 via acylium intermediates $\mathbf{3},{ }^{\mathbf{1 2}}$ isothiocyanates react as S-nucleophiles affording 1,3,4-thiadiazolium salts $\mathbf{9 , 1 1 , 1 2}$ or 1,2,4-triazolium salts 10.

Thus, when the 1-aza-2-azoniaallene salt 1a was treated with phenyl isothiocyanate the moderately stable thiadiazolium salt 9a was isolated in 82% yield (after recrystallization). Correspondingly, heterocycles $9 \mathbf{9 b}, \mathbf{c}$ were obtained. Thiadiazolium salts of this type seem to be unreported in the literature.

Assignments in favour of the thiadiazolium structure 9 and
against an isomeric triazolium constitution $\mathbf{1 0}$ are based inter alia on the IR spectra $\left(\mathrm{KBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, which are characterized by a very strong, somewhat broad band between 1615 and 1670 cm^{-1} assigned to the stretching vibration of the exocyclic $\mathrm{C}=\mathrm{N}$ double bond. That this absorption for exocyclic $\mathrm{C}=\mathrm{N}$ is greatly enhanced has been discussed by West and Warkentin for a 2-imino-1,3,4-thiadiazole. ${ }^{18,19}$ In the ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ the signals for $\mathrm{C}=\mathrm{N}$ were found between 168 and $180 \mathrm{ppm}(\mathrm{C} 2)$ and between 140 and $150 \mathrm{ppm}(\mathrm{C} 5)$.

L'abbé and co-workers pointed out that a phenylimino structure is substantiated by a low-field resonance of the aromatic ipso-C atom ($9 \mathbf{a}, \mathbf{c}$ around 150 ppm) and high-field absorptions for the ortho- and para-C atoms (9a,c around 121 and 127 ppm$).{ }^{20}$

The constitution of the salt $\mathbf{9 c}$ was additionally confirmed by X-ray structural analysis (Fig. 1, Table 1). It should be noted that the bonds $\mathrm{N} 3-\mathrm{C} 13$ and $\mathrm{C} 12-\mathrm{S}$ are cis orientated with respect to each other (dihedral angles $\mathrm{S}-\mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 13:-6.6^{\circ}$;

Table 1 Selected bond lengths (pm), bond angles and torsional angles ${ }^{\circ}$) for $9 \mathrm{c}^{21}$

Atoms	Exp.	Atoms	Exp.
C1-N1	$130.6(5)$	C3-N1-C1	$128.8(3)$
N1-N2	$140.9(4)$	C6-N2-N1	$119.2(3)$
N2-C12	$141.3(4)$	N3-C12-N2	$121.8(3)$
C12-S	$179.9(4)$	C12-N3-C13	$122.0(3)$
S-C1	$172.7(4)$	C1-N1-N2-C12	$2.4(4)$
C1-C2	$151.2(6)$	N1-N2-C12-S	$-0.9(4)$
N1-C3	$152.7(5)$	N2-C12-S-C1	$-0.5(3)$
N2-C6	$144.0(4)$	C12-S-C1-N1	$1.9(3)$
C12-N3	$125.8(5)$	S-C1-N1-N2	$-2.8(4)$
C1-N1-N2	$113.5(3)$	S-C12-N3-C13	$-6.6(6)$
N1-N2-C12	$113.9(3)$	C12-N3-C13-C14	$141.8(4)$
N2-C12-S	$107.6(3)$	N2-C12-N3-C13	$175.1(3)$
C12-S-C1	$90.5(2)$	N1-N2-C6-C7	$-72.6(4)$
S-C1-N1	$114.6(3)$	C1-N1-C3-C4	$67.8(5)$
C2-C1-N1	$125.4(4)$	C2-C1-N1-N3	$1.7(7)$

Fig. 1 ORTEP Plot for the cation 9c.
$\left.\mathrm{N} 2-\mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 13: 175.1^{\circ} ; \mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 14: 141.8^{\circ}\right)(c f$. structure $\mathbf{1 2}^{\prime} \mathbf{z}$).

A rationale for the formation of heterocycles 9 is depicted in Scheme 3. Obviously, the initially formed cycloadducts $\mathbf{8}$ are unstable rearranging to the thiadiazolium salts 9 by a [1,2] shift of substituent R^{2}. Such shifts play an important role in the chemistry of azolium salts. ${ }^{8,22-25}$ Mechanistically, these shifts can be regarded as generalized Wagner-Meerwein rearrangements. ${ }^{22}$ In the transition state the migrant carries a positive partial charge. If there is a choice, the group forming the more stable carbenium ion migrates preferentially. Thus, in 8c the isopropyl group migrates in preference to the methyl group.

Under the conditions described for the formation of thiadiazoles 9 , the 1-aza-2-azoniaallene $1 d$ reacted with isopropyl isothiocyanate to afford the triazolium salt 10 d in 66% yield. Similarly, the salts 10e-j were obtained (Scheme 3). The ring enlargement reactions leading to the bicyclic compounds $\mathbf{1 0 f}, \mathbf{g}$ are worth mentioning. Triazolium salts of type $\mathbf{1 0}$ seem to be unreported in the literature.
In place of a strong, broad band between 1615 and $1670 \mathrm{~cm}^{-1}$ observed for salts 9 , compounds $\mathbf{1 0}$ show a moderately strong and sharp IR absorption (KBr or nujol) between 1590 and 1615 cm^{-1} assigned to the endocyclic $\mathrm{C}=\mathrm{N}$ double bond, and two strong bands around 1565 and $1555 \mathrm{~cm}^{-1}$. In the ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ the signals for $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{S}$ appear at $155-$ 160 ppm and $167-169 \mathrm{ppm}$. For neutral 4,5-dihydro-1,2,4-triazole-5-thiones chemical shifts for $\mathrm{C}=\mathrm{N}$ between 145 and 160 ppm and for $\mathrm{C}=\mathrm{S}$ between 161 and 169 ppm have been reported. ${ }^{26-30}$ The four ${ }^{13} \mathrm{C}$ signals for the N -phenyl group of $\mathbf{1 0 e}$ fall in the range of 128.8 to 133.0 ppm . The absence of phenyl signals around 150 and 121 ppm is further evidence against an isomeric structure $9 \mathbf{e}$.

Table 2 Selected bond lengths (pm), bond angles and torsional angles $\left({ }^{\circ}\right)$ for $\mathbf{1 0 d}{ }^{21}$

Atoms	Exp.	Atoms	Exp.
C1-N2	$136.4(5)$	N1-C2-C20	$123.6(1)$
N2-N1	$138.5(5)$	C1-N3-C31	$121.0(4)$
N1-C2	$131.8(5)$	C1-N2-N1-C2	$1.0(5)$
C2-N3	$134.9(6)$	N2-N1-C2-N3	$0.0(4)$
N3-C1	$140.2(5)$	N1-C2-N3-C1	$-0.9(4)$
C1-S	$163.1(5)$	C2-N3-C1-N2	$1.5(4)$
C1-N2-N1	$109.9(3)$	N3-C1-N2-N1	$-1.5(4)$
N2-N1-C2	$108.1(3)$	N1-N2-C1-S	$179.0(3)$
N1-C2-N3	$108.2(4)$	C31-N3-C1-S	$-2.1(6)$
C2-N3-C1	$110.4(3)$	C32-C31-N3-C1	$-95.0(5)$
N3-C1-N2	$103.4(4)$	C1-N2-N1-C11	$179.9(4)$
N3-C1-S	$129.6(3)$	C1-N3-C2-C20	$179.2(4)$
N2-C1-S	$127.0(3)$	C2-N1-N2-C21	$175.6(4)$
C2-N1-C11	$130.4(4)$	N1-N2-C21-C22	$-76.1(6)$

Fig. 2 ORTEP Plot for the cation 10d.

The constitution of compound $\mathbf{1 0 d}$ was additionally established by X-ray structural analysis (Fig. 2, Table 2).

The triazoles $\mathbf{1 0}$ must have been formed by Dimroth rearrangement of intermediates 8 . We never observed a Dimroth rearrangement $\mathbf{9 \rightarrow 1 0}$. If the [1,2] shift of R^{2} of the thiadiazolium ion $\mathbf{8}$ is faster than Dimroth rearrangement, the final product is a salt 9. Vice versa, if Dimroth rearrangement of the intermediate $\mathbf{8}$ is faster than a [1,2] shift of R^{2}, one ends up with a triazole 10. Thus, with the good migrant isopropyl ($\mathbf{8 a - c}$) thiadiazoles 9 are produced, while with the slower migrant ethyl ($\mathbf{8 h}$) the triazolium salt $\mathbf{1 0 h}$ is formed. The substitution patterns of compounds $\mathbf{9}, \mathbf{1 0}$ show that an isopropyl group migrates in preference to a methyl ($\mathbf{9 c}$), the ethyl or phenyl groups. An ethyl group is a better migrant than a methyl group ($\mathbf{1 0 h}$), the phenyl group migrates faster than methyl (10i) but not as fast as ethyl ($\mathbf{1 0 j} \mathbf{j}$). A phenonium ion mechanism might be operative in cases of phenyl migration.
It is well known from other azolium rearrangements that substituents forming especially stable carbenium ions can escape from the heterocycle instead of migrating intramolecularly to another ring position. ${ }^{8,10,14,23,31-35}$ When the heteroallene $\mathbf{1 k}$ with $\mathrm{R}^{2}=$ benzyl was treated with methyl isothiocyanate, instead of a thiadiazolium salt 9 , the salt 11 k without a benzyl substituent was isolated (Scheme 3). Most likely, traces of water intercepting a free benzyl cation as benzyl alcohol are responsible for this result. Recently, we reported a similar reaction leading to salt 11* (Scheme 3), the structure of which, including the site of protonation, was secured by X-ray structural analysis. ${ }^{15}$ From a heteroallene $\mathbf{1}$ with $\mathrm{R}^{2}=$ tert-butyl and a glucosyl isothiocyanate a thiadiazolium salt $\mathbf{1 1}$ was formed with concomitant loss of isobutene. ${ }^{14}$

The isopropyl group seems to be a borderline case of a group, which either migrates to afford a salt 9 or is eliminated as propene to furnish a salt $\mathbf{1 1}$. Thus, under apparently identical conditions in three experiments compound $\mathbf{9 b}$ containing two isopropyl groups was obtained from the reaction of heteroallene 1 a with methyl isothiocyanate, while in three other experiments the salt 11b with only one isopropyl substituent was
isolated. Under conditions where heteroallene 1a reacted with methyl isothiocyanate to give the diisopropyl compound $\mathbf{9 b}$, the more electron deficient allene $\mathbf{1 1}$ reacted to afford the monoisopropyl compound 111. Similarly, from salt 11 and tert-butyl isothiocyanate the heterocycle $\mathbf{1 1 m}$ was obtained.

The heteroallenes 1 with $\mathrm{R}^{2}=\mathrm{H}$ are worth mentioning. The difficulties associated with the syntheses of such compounds have been discussed elsewhere. ${ }^{31}$ When the heteroallene $\mathbf{1 n}$ was treated with cyclohexyl isothiocyanate, the thiadiazolium salt $\mathbf{1 1 n}$ was isolated (66%). Correspondingly, from allenes $\mathbf{1 0 - q}$ the heterocycles $\mathbf{1 1 0} \mathbf{- q}$ were prepared. Not unexpectedly, a proton is a better migrant than an alkyl cation. The site of protonation of compounds $\mathbf{1 1}$ suggests that for $\mathrm{R}^{2}=\mathrm{H}$ the transformation $\mathbf{8} \rightarrow \mathbf{1 1}$ is an intermolecular process.

Only thiadiazolium salts ($\mathbf{1 1 r - t}$) were obtained from reactions of isothiocyanates with heteroallenes 1 with $\mathrm{R}^{2}=$ isopropyl and $\mathrm{R}^{3}=$ COOEt. On treatment with aqueous sodium hydroxide the thiadiazoles $\mathbf{1 1}^{\prime} \mathbf{k - q}, \mathbf{s}$ were obtained from their salts. The bases $\mathbf{1 1} \mathbf{1} \mathbf{p}, \mathbf{q}$ were characterized as their picrates.

Similar to compounds $\mathbf{9}$, salts $\mathbf{1 1}$ are characterized by a strong, broad IR band between 1595 and $1620 \mathrm{~cm}^{-1}$ and other strong bands between 1540 and $1600 \mathrm{~cm}^{-1}$ (Nujol mull or KBr). In the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}\right){ }^{3} J$ couplings between the iminoalkyl substituent and NH indicate protonation of the exocyclic imino nitrogen atom. In the ${ }^{13} \mathrm{C}$ NMR spectra two resonances for $\mathrm{C}=\mathrm{N}$ were found at $154-166 \mathrm{ppm}$ and $167-175$ ppm . Other than for salts $\mathbf{9}$, no unusual shifts for the exocyclic phenyliminium groups ($\mathbf{1 1 0 , p , r}, \mathbf{r}$) were observed. The IR and ${ }^{13} \mathrm{C}$ NMR characteristics of the salts 11 and their bases $\mathbf{1 1}^{\prime}$ have been put together in Scheme 4.

While heteroallenes 1 with a good leaving group R^{2} such as benzyl, hydrogen, tert-butyl, ${ }^{15}$ or occasionally also isopropyl, react with isothiocyanates to furnish 2,3-dihydro-2-imino-1,3,4-thiadiazolium salts $\mathbf{1 1}$, cations $\mathbf{1}$ with a good leaving group R^{3} afford 2,5-dihydro-2-imino-1,3,4-thiadiazolium salts 12 (Scheme 3). Obviously, a leaving group R^{3} is a good one if its elimination from intermediate $\mathbf{8}$ is faster than Dimroth rearrangement $\mathbf{8} \rightarrow \mathbf{1 0}$. Thus, when the benzoyl compound $\mathbf{6 u}$ was treated with antimony pentachloride and isopropyl isothiocyanate the moderately stable iminium salt $\mathbf{1 2 u}$ was obtained (59%). Alternatively, this salt was prepared from the carboxylate $\mathbf{6 v}$ and isopropyl isothiocyanate ($\mathbf{1 2 u}=\mathbf{1 2 v}, 56 \%$). Correspondingly, the thiadiazolium salts $\mathbf{1 2 w}, \mathbf{x}$ were obtained (Scheme 3). Again, the presence of traces of moisture in the reaction mixtures is likely to be responsible for these results.

Easily accessible are heteroallenes 1 with $\mathrm{R}^{3}=$ tert-butyl. ${ }^{8}$ Thus, when the (1-chloroalkyl)azo compound $6 \mathbf{y}$ was treated with antimony pentachloride and isopropyl isothiocyanate the salt $\mathbf{1 2 y}(\equiv \mathbf{1 2 u})$ was obtained in 79% yield. Neutralization with aqueous sodium hydroxide afforded the imine $\mathbf{1 2}^{\prime} \mathbf{u}$ (89%). Correspondingly, the salts 12z-ad were prepared. Interestingly, for none of the cations $\mathbf{1 2}$ was a [1,2] shift of R^{2} (e.g. 12ac with $\mathrm{R}^{2}=$ isopropyl) observed.

The salts $\mathbf{1 2}$ all show a very strong and broad IR band between 1620 and $1650 \mathrm{~cm}^{-1}$ and a sharp strong band between 1530 and $1555 \mathrm{~cm}^{-1}$ (nujol, KBr) (Scheme 4). The bases $\mathbf{1 2}^{\prime}$ show a broad, strong $\mathrm{C}=\mathrm{N}$ vibration between 1620 and 1660 $\mathrm{cm}^{-1}\left(\mathrm{CCl}_{4}\right.$ or KBr$)$. The ${ }^{13} \mathrm{C}$ resonances for the sp^{3} hybridized ring carbon atoms C5 were found at unusually low field ($\mathbf{1 2}$ 121-137 ppm, 12' $105-112 \mathrm{ppm}$) as were the signals for $\mathrm{SC}=\mathrm{N}$ ($\mathbf{1 2}$ 183-190 ppm, 12' 174-177 ppm). Similar observations for 2,5-dihydro-1,3,4-thiadiazoles have been reported by Heimgartner and co-workers. ${ }^{36}$ In contrast to compounds 11, for the salts $12 \mathrm{a}^{3} J_{\mathrm{HNCH}}$ coupling was not observed. Hence in contrast to thiadiazolium salts 11, the site of protonation of compounds $\mathbf{1 2}$ is unlikely to be the exocyclic imino nitrogen atom. The ${ }^{13} \mathrm{C}$ NMR resonances for the phenyl ipso-carbon atoms of salts $\mathbf{1 2 w}, \mathbf{z}$ (about 136 ppm) were not found to be shifted to unusually low fields as observed for the salts $9 \mathrm{a}, \mathbf{c}$ (around 150 ppm). However, shifts around 149 ppm were found for the bases

1617-1665 (br,vs) nujol or KBr
9

1590-1615 (s) nujol or KBr
9

11

12

Scheme 4 Some ${ }^{13} \mathrm{C}$ NMR (ppm in $\mathrm{CD}_{3} \mathrm{CN}$ or CDCl_{3}) and IR characteristics of the new heterocycles prepared.
$\mathbf{1 2}^{\prime} \mathbf{w}, \mathbf{z}$. These findings suggest N 3 to be the site of protonation of salts $\mathbf{1 2}$. Because of amidinium resonance, the double bond character of the exocyclic $\mathrm{C}=\mathrm{N}$ bond of salts $\mathbf{1 2}$ should be less pronounced than in the amidines $\mathbf{1 2}^{\prime}$.

Compound $\mathbf{1 2 z}$ was prepared by Landquist by oxidation of acetone 4-phenylthiosemicarbazone with manganese dioxide. ${ }^{37}$ Under slightly different conditions Landquist obtained the isomeric triazole 13. For reasons of comparison the spectroscopic data for compound $\mathbf{1 3}$ are included in Scheme 4. ${ }^{18,38}$

The crystallographic structure of the thiadiazole $\mathbf{1 2}^{\prime} \mathbf{z}$ has

been reported. ${ }^{39,40}$ An X-ray crystallographic analysis of our product $\mathbf{1 2}^{\prime} \mathbf{z}$ confirmed the identity with Landquist's compound. Our crystallographic data will not be repeated here, since they are in good agreement with the literature data.

Similar to the stereochemistry observed for salts 9 c and $\mathbf{1 1}^{*},{ }^{15}$ the N5-C6 and the C2-S bonds of compound $\mathbf{1 2}^{\prime} \mathbf{z}$ are cis orientated with respect to each other (dihedral angles S-C2-N5-C6: -2.0(2) ${ }^{\circ}$; N3-C2-N5-C6: -178.1(1) ${ }^{\circ}$; C2-N5-C6-C7: $\left.+145.1(2)^{\circ}\right)$. This is in contrast to what one would expect for stereoelectronic reasons. Nucleophilic additions to the nitrilium triple bond of intermediates 7 are known to proceed stereoelectronically controlled in such a way that in the product the
nitrilium substituent R^{4} and N -nucleophile are cis orientated with respect to each other. ${ }^{41,42}$ It is tempting to speculate that under the reaction conditions the primarily formed cis products undergo fast isomerization to the thermodynamically more stable trans products $\mathbf{9 c}, \mathbf{1 1}^{*}, \mathbf{1 2} \mathbf{z}^{\prime}{ }^{43}$ Actually, all compounds $\mathbf{9 , 1 1 , 1 2}$ were isolated as single geometrical isomers.

Experimental

Solvents were dried by standard methods. Cycloadditions were carried out with exclusion of moisture. IR spectra were recorded on a Perkin-Elmer FTIR 1600 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC-250 and WM-250 spectrometers; internal reference $\mathrm{SiMe}_{4} ; 295 \mathrm{~K}$; δ-scale; J-values are given in Hz .

X-Ray structural analysis of $\mathbf{9 c}{ }^{\mathbf{2 1}}$

Crystal data. $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}^{+}\left[\mathrm{SbCl}_{6}\right]^{-}, \quad M=748.2\right.$, monoclinic, space group $P 2_{1} / n$ (No. 14), $a=811(1), b=2650(1), c=$ 1345.0(6) $\mathrm{pm}, \beta=101.4(1)^{\circ}, T=248 \mathrm{~K}, V=2835(4) \times 10^{6} \mathrm{pm}^{3}$, $Z=4, F(000)=1464, D_{\mathrm{c}}=1.753 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=19.09$ $\mathrm{cm}^{-1}, \lambda=71.073 \mathrm{pm}$.

Data collection. Intensity data were collected on a Siemens P4 diffractometer using Mo-K α radiation from a graphite monochromator in the θ-range of $2.18-27.00^{\circ}$ (Wyckoff scan). The orange crystal used had dimensions $0.3 \times 0.3 \times 0.5 \mathrm{~mm}$. Three reference reflections were measured every 97 reflections. The reference reflections showed no significant variation in intensities throughout data collection. Lorentz and polarization corrections were applied to the data and equivalent reflections were merged to give 5218 unique reflections with $I / \sigma(I)>2\left(R_{\text {int }}=\right.$ 0.0253 for all 6194 reflections).

Structure solution and refinement. ${ }^{44}$ The structure was solved by direct methods in $P n$ and refined in $P 2_{1} / n$. All atoms including all hydrogen atoms were located by difference-Fourier synthesis. The hydrogen atoms were refined with fixed isotropic U. A semi-empirical absorption correction was applied by using psi-scan data. The final cycles of full-matrix least-squares refinement converged against $R=0.0380$ and $w R(F)=0.0904$ for 357 parameters and 5218 reflections with weights of $1 /\left[\sigma^{2}(F)+0.034000 P^{2}+5.660400 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$. In the final difference-Fourier map there were residual peaks in the range -0.79 to $+0.87 \times 10^{-6} \mathrm{e} \mathrm{pm}^{-3}$.

X-Ray structural analysis of $\mathbf{1 0 d}{ }^{21}$

Crystal data. $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}^{+}\left[\mathrm{SbCl}_{6}\right]^{-}, M=686.1\right.$, monoclinic, space group $P 2_{1} / n$ (No. 14), $a=956.6$ (3), $b=1878.6$ (7), $c=1414.7(5) \mathrm{pm}, \beta=105.2(1)^{\circ}, T=243 \mathrm{~K}, V=2453(2) \times 10^{6}$ $\mathrm{pm}^{3}, Z=4, F(000)=1336, D_{\mathrm{c}}=1.858 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=$ $22.11 \mathrm{~cm}^{-1}, \lambda=71.073 \mathrm{pm}$.

Data collection. Intensity data were collected on a Siemens $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$ diffractometer using Mo-K α radiation from a graphite monochromator in the θ-range of $2.0-27.0^{\circ}$ (Wyckoff scan). The yellow crystal used had dimensions $0.35 \times 0.35 \times 0.40 \mathrm{~mm}$. Three reference reflections were measured every 97 reflections. The reference reflections showed no significant variation in intensities throughout data collection. Lorentz and polarization corrections were applied to the data and equivalent reflections were merged to give 4289 unique reflections with $I / \sigma(I)>4$ ($R_{\text {int }}=0.046$ for all 5349 reflections).

Structure solution and refinement. ${ }^{45}$ The structure was solved by the Patterson method. All non-hydrogen atoms were located by difference-Fourier synthesis. For the hydrogen atoms the riding model with $d(\mathrm{C}-\mathrm{H})=0.95 \mathrm{pm}$ and fixed isotropic U was
applied. A semi-empirical absorption correction was applied by using psi-scan data. The final cycles of full-matrix least-squares refinement converged against $R=0.0368$ and $w R(F)=0.0395$ for 244 parameters and 4289 reflections with weights of 1/ $\left[\sigma^{2}(F)+0.00001 F^{2}\right]$. In the final difference-Fourier map there were residual peaks in the range -0.85 to $+0.98 \times 10^{-6} \mathrm{e} \mathrm{pm}^{-3}$.

Preparation of the hydrazones: general procedure

A solution of the ketone (100 to 120 mmol) and the hydrazine $(100 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{ml})$ containing $\mathrm{AcOH}(1 \mathrm{ml})$ was boiled under reflux for 6 to 12 h . Evaporation of the solvent and crystallization of the residue at $-15^{\circ} \mathrm{C}$ from EtOH afforded the pure hydrazone. Alternatively, the crude hydrazone was dissolved in pentane. The solution was left at $-15^{\circ} \mathrm{C}$ for 12 h. Filtration with added decolorizing charcoal and evaporation of the solvent furnished the pure hydrazone.

The following new hydrazones were obtained.
2,4-Dimethylpentan-3-one (2,4,6-trichlorophenyl)hydrazone. The title compound was isolated ($24.66 \mathrm{~g}, 80 \%$) as a brownish oil (Found: C, 50.89; H, 5.55, N, 9.18. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ (MW = 307.7) requires $\mathrm{C}, 50.75 ; \mathrm{H}, 5.57 ; \mathrm{N}, 9.11 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1559,$1468 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12(\mathrm{~d}, J 6.8,6 \mathrm{H}), 1.23(\mathrm{~d}$, $J 7.0,6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.62$ (septet, $J 6.8$), 3.04 (septet, $J 7.0$) (CH), 7.13 (br, NH), 7.25 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 18.8, 21.7 $\left(\mathrm{CH}_{3}\right), 27.9,31.3(\mathrm{CH}), 125.9,126.4,128.6,139.4$ (aryl), 164.1 $(\mathrm{C}=\mathrm{N})$.

1-Phenylpropanone (2,4,6-trichlorophenyl)hydrazone. The title compound was isolated ($20.64 \mathrm{~g}, 63 \%$) as a moderately stable crystalline powder, mp $63-64^{\circ} \mathrm{C}$ (decomp.) (Found: C, 54.87; $\mathrm{H}, 4.10 ; \mathrm{N}, 8.63 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{2}(\mathrm{MW}=327.6)$ requires $\mathrm{C}, 54.99$; $\mathrm{H}, 4.00 ; \mathrm{N}, 8.55 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1687,3355 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ca. 5:1 mixture of the geometrical isomers; main isomer $1.29\left(\mathrm{t}, J 7.7, \mathrm{CH}_{3}\right), 2.77\left(\mathrm{q}, J 7.7, \mathrm{CH}_{2}\right), 7.49(\mathrm{br}, \mathrm{NH})$, 7.21-7.78 (several m, ary); minor isomer $1.12\left(\mathrm{t}, J 7.5, \mathrm{CH}_{3}\right)$, $2.57\left(\mathrm{q}, J 7.5, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer 10.1 $\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{2}\right), 151.7(\mathrm{C}=\mathrm{N})$; minor isomer $11.1\left(\mathrm{CH}_{3}\right)$, 31.4 $\left(\mathrm{CH}_{2}\right), 153.6(\mathrm{C}=\mathrm{N})$.

2,4-Dimethylpentan-3-one (4-nitrophenyl)hydrazone. The title compound was isolated ($21.19 \mathrm{~g}, 85 \%$) as an orange powder; $\mathrm{mp} 113-115^{\circ} \mathrm{C}$ (Found: C, 62.61; H, 7.69; N, 16.90. $\mathrm{C}_{13} \mathrm{H}_{19}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{2}(\mathrm{MW}=249.3)$ requires $\left.\mathrm{C}, 62.63 ; \mathrm{H}, 7.68 ; \mathrm{N}, 16.85 \%\right)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3375,1601 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18(\mathrm{~d}$, $J 6.7$), $1.20(\mathrm{~d}, J 6.9)\left(\mathrm{CH}_{3}\right), 2.69$ (septet, $J 6.7$), 2.95 (septet, $J 6.9$) (CH), 7.07 (m, 2 H), 8.13 (m, 2 H) (aryl), 7.92 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.0,22.1\left(\mathrm{CH}_{3}\right), 27.6,30.9(\mathrm{CH}), 111.6$, 126.1, 139.5, 151.0, 162.2 (aryl, C=).

Ethyl 3-methyl-2-butylidenecarbazate. The title compound was isolated ($15.36 \mathrm{~g}, 89 \%$) as a semi-solid resin, which decomposed during the next few days (Found: C, 55.87 ; H, 9.27; $\mathrm{N}, 16.24 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MW}=172.2)$ requires C , 55.79 ; $\mathrm{H}, 9.36 ; \mathrm{N}, 16.26 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3387,1741,1710 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) ca. 20:1 mixture of the geometric isomers; main component $1.08(\mathrm{~d}, J 6.9,6 \mathrm{H}), 1.30(\mathrm{t}, J 6.9), 1.83\left(\mathrm{CH}_{3}\right), 2.64$ (septet, $J 6.9, \mathrm{CH}$), 4.25 (q, $\left.J 7.0, \mathrm{CH}_{2}\right), 8.60(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{c}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main component $12.0,14.6,19.8(2 \mathrm{C})\left(\mathrm{CH}_{3}\right)$, 36.9, 61.6 (br) ($\mathrm{CH}, \mathrm{CH}_{2}$), 155.0 (br), 174.4 (C=).

Ethyl 2-methyl-3-pentylidenecarbazate. The title compound was isolated ($11.36 \mathrm{~g}, 61 \%$) as prisms; $\mathrm{mp} 56-58^{\circ} \mathrm{C}$ (Found: C, 57.80; $\mathrm{H}, 9.67 ; \mathrm{N}, 15.26 . \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MW}=186.3)$ requires C, $58.03 ; \mathrm{H}, 9.74 ; \mathrm{N}, 15.04 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3395,1760,1716$, $1701 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer $1.11(\mathrm{t}, J 7.7,3 \mathrm{H})$, $1.11(\mathrm{~d}, J 7.0,6 \mathrm{H}), 1.32(\mathrm{t}, J 7.2,3 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.22(\mathrm{q}, J 7.7)$, 4.27 (q, J 7.2, coupled to 1.32) $\left(\mathrm{CH}_{2}\right), 2.66$ (septet, $\left.J 7.0, \mathrm{CH}\right)$, $7.82(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer 10.1, 14.6 ,
19.4, 20.0 (2 C), 36.2, 61.7 (br) $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 154.3$ (br), $161.7(\mathrm{C}=)$.

Ethyl 2,4-dimethyl-3-pentylidenecarbazate. The title compound was isolated ($16.42 \mathrm{~g}, 82 \%$) as a powder; mp $71-73^{\circ} \mathrm{C}$ (Found: C, 59.63; $\mathrm{H}, 10.17 ; \mathrm{N}, 14.01 . \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MW}=$ 200.3) requires $\mathrm{C}, 59.97 ; \mathrm{H}, 10.06 ; \mathrm{N}, 13.99 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3386,1741,1709 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14(\mathrm{~d}, J 6.8$, $6 \mathrm{H}), 1.16(\mathrm{~d}, J 7.0,6 \mathrm{H}), 1.31(\mathrm{t}, J 7.1)\left(\mathrm{CH}_{3}\right), 2.64$ (septet, $J 6.8), 2.84$ (septet, $J 7.0$) (CH), $4.25\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right), 8.05$ (br, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.6,18.9(2 \mathrm{C}), 21.5(2 \mathrm{C})\left(\mathrm{CH}_{3}\right)$, $27.7,31.5(\mathrm{CH}), 61.5\left(\mathrm{br}, \mathrm{CH}_{2}\right), 154.5(\mathrm{br}), 164.5(\mathrm{C}=)$.

Acetone benzoylhydrazone. The title compound was isolated $(12.91 \mathrm{~g}, 73 \%)$ as powder, $\mathrm{mp} 136-138^{\circ} \mathrm{C}$ (Found: C, 68.18 ; H, 6.72; $\mathrm{N}, 16.10 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}(\mathrm{MW}=176.2)$ requires $\mathrm{C}, 68.16 ; \mathrm{H}$, $6.86 ; \mathrm{N}, 15.90 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1656 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.97 (br), 2.09 (br) $\left(\mathrm{CH}_{3}\right), 7.32-7.79$ (several m, phenyl), 8.97 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.8$ (br), 25.5 (br) $\left(\mathrm{CH}_{3}\right), 127.3$ (br), 128.6 (br), 131.7, 133.7 (phenyl), 156.6 (br), 164.2 (br)(C=).

Ethyl 2-butylidenecarbazate. The title compound was isolated $(10.44 \mathrm{~g}, 66 \%)$ as prisms (from pentane); $\mathrm{mp} 33-35^{\circ} \mathrm{C}$ (Found: C, 52.75; H, 8.97; $\mathrm{N}, 17.55 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MW}=158.2)$ requires C, $53.14 ; \mathrm{H}, 8.92 ; \mathrm{N}, 17.71 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3394,1760$, $1701 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ ca. $4: 1$ mixture of the geometrical isomers; main isomer $1.10(\mathrm{t}, J 7.6), 1.31(\mathrm{br}, \mathrm{t}, J 7.1), 1.87$ $\left(\mathrm{CH}_{3}\right), 2.33(\mathrm{q}, J 7.6), 4.26(\mathrm{br}, \mathrm{q}, J 7.1)\left(\mathrm{CH}_{2}\right), 8.26(\mathrm{br}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer $11.1,14.5,14.6,32.2,61.7$ (br) $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 154.8$ (br), $155.2(\mathrm{C}=)$.

Butan-2-one tert-butylhydrazone. The title compound was prepared from butan-2-one $(10.82 \mathrm{~g}, 150 \mathrm{mmol})$ and tertbutylhydrazinium chloride $(12.46 \mathrm{~g}, 100 \mathrm{mmol})$ instead of the free hydrazine; yield $10.19 \mathrm{~g}(57 \%)$ of the hydrochloride of the title hydrazone; mp 122-124 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 53.19 ; H, 10.60; $\mathrm{N}, 15.93 . \mathrm{C}_{8} \mathrm{H}_{19} \mathrm{ClN}_{2}(\mathrm{MW}=178.7)$ requires $\mathrm{C}, 53.77 ; \mathrm{H}$, 10.72; N, $15.68 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1654,1564 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.11(\mathrm{t}, J 7.3), 1.53(9 \mathrm{H}), 2.42(\mathrm{q}, J 7.3), 2.46\left(\mathrm{CH}_{3}\right)$, 10.78 (br, NH_{2}); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.8,20.7,24.9(3 \mathrm{C})$, $33.1,60.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 179.5(\mathrm{C}=\mathrm{N})$. A mixture of the hydrochloride $(8.94 \mathrm{~g}, 50 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(7.95 \mathrm{~g}, 75 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ was stirred for 10 min . Repeated extraction with pentane and usual work-up afforded the title hydrazone as a volatile oil ($5.05 \mathrm{~g}, 71 \%) ; \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2}(\mathrm{MW}=142.2) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; CDCl_{3}) main isomer $1.06(\mathrm{t}, J 7.3), 1.18(9 \mathrm{H}), 1.69\left(\mathrm{CH}_{3}\right), 2.22$ $\left(\mathrm{q}, J 7.3, \mathrm{CH}_{2}\right), 4.03\left(\mathrm{br}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer 11.1, 13.8, $28.6(3 \mathrm{C}), 32.3,53.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 148.1$ ($\mathrm{C}=\mathrm{N}$).

2-Methylpentan-3-one tert-butylhydrazone. The title compound was isolated $(5.96 \mathrm{~g}, 35 \%)$ as a moderately stable impure pale yellow oil; bp $67-69^{\circ} \mathrm{C} / 15$ Torr; $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}(\mathrm{MW}=170.3)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer $1.06(\mathrm{t}, J 7.3), 1.07(\mathrm{~d}, J 6.8$, $6 \mathrm{H}), 1.17(9 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.13\left(\mathrm{q}, J 7.3, \mathrm{CH}_{2}\right), 2.44$ (septet, $J 6.8$, $\mathrm{CH}), 4.37(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ main isomer 10.0 , 19.8, 20.5, $28.4(3 \mathrm{C}), 35.5,53.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 154.9$ $(\mathrm{C}=\mathrm{N})$.

Tricyclo[3.3.1.1 ${ }^{3,7}$]decanone tert-butylhydrazone. The title compound was prepared from adamantanone $(15.02 \mathrm{~g}, 100$ mmol) and tert-butylhydrazinium chloride $(12.46 \mathrm{~g}, 100 \mathrm{mmol})$ instead of the free hydrazine. The hydrochloride of the title hydrazone was obtained as a powder ($19.39 \mathrm{~g}, 76 \%$); mp 209$211^{\circ} \mathrm{C}$ (decomp.) (Found: C, 65.32; H, 9.73; N, 11.03. $\mathrm{C}_{14} \mathrm{H}_{25}{ }^{-}$ $\mathrm{ClN}_{2}(\mathrm{MW}=256.8)$ requires $\mathrm{C}, 65.48 ; \mathrm{H}, 9.81 ; \mathrm{N}, 10.91 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1633 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3} ; 313 \mathrm{~K}\right) 1.37$ $\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76-2.09$ (several m, $12 \mathrm{H}, \mathrm{CH}_{2}$), 2.61 (br, 1 H), $3.28(\mathrm{br}, 1 \mathrm{H})(\mathrm{CH}), 11.19(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{SOCD}_{3}\right.$; $313 \mathrm{~K}) 24.3,26.7,34.0,35.5,37.8,38.5,38.7,57.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, $\mathrm{CH}, \mathrm{C}), 185.2(\mathrm{C}=\mathrm{N})$. The title hydrazone was prepared from
its hydrochloride in the manner described for butan-2-one tert-butylhydrazone and was isolated as an oil (8.38 g, 76\%); $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2}(\mathrm{MW}=220.4) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3352,1732,1722$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.73-1.99$ (several m, $\left.12 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 2.55(\mathrm{br}, 1 \mathrm{H}), 3.00(\mathrm{br}, 1 \mathrm{H})(\mathrm{CH}), 4.23(\mathrm{br}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.1,28.4$ (3 C), 29.2, 36.6, 37.5, 39.2, 39.9, $53.0\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 157.7(\mathrm{C}=\mathrm{N})$.

Preparation of the (1-chloroalkyl)azo compounds: general procedure

The reactions were carried out with exclusion of light. A solution of tert-butyl hypochlorite ${ }^{46}(1.30 \mathrm{~g}, 12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ was added dropwise to a cold $\left(-50^{\circ} \mathrm{C}\right)$ solution of the hydrazone (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $-50^{\circ} \mathrm{C}$ for 1 h and then at $0^{\circ} \mathrm{C}$ for 2 to 10 h , and finally at $23^{\circ} \mathrm{C}$ for 0 to 3 h , the solvent was removed under reduced pressure. In most cases the moderately stable orange oily residue $\mathbf{6}$ was used without further purification.

The following new 1-chloroazo compounds were obtained.
1-[(1-Chloro-1-isopropyl-2-methylpropyl)azo]-2,4,6-trichlorobenzene 6a. The title compound was isolated ($3.08 \mathrm{~g}, 90 \%$) as an orange oil; $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{~N}_{2}(\mathrm{MW}=342.1) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.09(\mathrm{~d}, J 6.7,6 \mathrm{H}), 1.13(\mathrm{~d}, J 6.7,6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.83$ (septet, $J 6.7$, $2 \mathrm{CH}), 7.41$ (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.3,17.6\left(\mathrm{CH}_{3}\right), 35.8$ (CH), 109.8 (C), 127.8, 129.2, 134.0, 145.3 (aryl).

1-[(1-Chloro-1-phenylpropyl)azo]-2,4,6-trichlorobenzene $\mathbf{6 j}$. The title compound was isolated $(3.28 \mathrm{~g}, 91 \%)$ as an orange oil; $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2}(\mathrm{MW}=362.1) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07(\mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{3}\right), 2.67(\mathrm{q}, J 7.3)\left(\mathrm{CH}_{2}\right), 7.37$ (aryl), 7.33-7.73 (several m, phenyl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.0\left(\mathrm{CH}_{3}\right), 36.4\left(\mathrm{CH}_{2}\right), 101.4(\mathrm{C})$, 127.2, 127.3, 128.4, 128.7, 128.9, 133.8, 139.3, 145.7 (phenyl, aryl).

1-[(1-Chloro-1-isopropyl-2-methylpropyl)azo]-4-nitrobenzene 61. The title compound was isolated ($13.90 \mathrm{~g}, 98 \%$) as an orange crystalline powder; mp $59-61^{\circ} \mathrm{C}$ (Found: C, 55.00 ; H, 6.27; N, 14.94. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2}(\mathrm{MW}=283.8)$ requires $\mathrm{C}, 55.02 ; \mathrm{H}, 6.39$; $\mathrm{N}, 14.81 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06(\mathrm{~d}, J 6.7), 1.07(\mathrm{~d}, J 6.7)$ $\left(\mathrm{CH}_{3}\right), 2.87$ (septet, $\left.J 6.7, \mathrm{CH}\right), 7.86(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{~m}, 2 \mathrm{H})$ (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.3,17.7\left(\mathrm{CH}_{3}\right), 36.3(\mathrm{CH}), 108.5$ $(\mathrm{CCl}), 123.5,124.8,148.9,154.3$ (aryl).

Ethyl (1-chloro-1,2-dimethylpropyl)diazenecarboxylate 6 . The title compound was isolated $(1.80 \mathrm{~g}, 87 \%)$ as a yellow oil; $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \quad(\mathrm{MW}=206.7) ; \quad v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} \quad 1769 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93(\mathrm{~d}, J 6.7), 1.14(\mathrm{~d}, J 6.7), 1.41(\mathrm{t}, J 7.1), 1.81$ $\left(\mathrm{CH}_{3}\right), 2.57$ (septet, $\left.J 6.7, \mathrm{CH}\right), 4.44\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1,17.2,17.4,26.4,38.2\left(\mathrm{CH}_{3}, \mathrm{CH}\right), 64.7$ $\left(\mathrm{CH}_{2}\right), 101.0(\mathrm{C}), 161.8(\mathrm{C}=\mathrm{O})$.

Ethyl (1-chloro-1-ethyl-2-methylpropyl)diazenecarboxylate 6s. The title compound was isolated $(1.95 \mathrm{~g}, 88 \%)$ as a yellow oil; $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \quad(\mathrm{MW}=220.7) ; \quad v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1769 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(\mathrm{t}, J 7.3), 0.90(\mathrm{~d}, J 6.8), 1.14(\mathrm{~d}, J 6.8), 1.42$ $(\mathrm{t}, J 7.1)\left(\mathrm{CH}_{3}\right), 2.32(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{q}, J 7.2,2 \mathrm{H})\left(\mathrm{CH}_{2}\right), 2.67$ (septet, $J 6.8, \mathrm{CH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8,14.2,17.0,17.3$, $32.6,37.1,64.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 104.8(\mathrm{C}), 161.9(\mathrm{C}=\mathrm{O})$.

Ethyl (1-chloro-1-isopropyl-2-methylpropyl)diazenecarboxylate 6t. The title compound was isolated $(2.03 \mathrm{~g}, 87 \%)$ as a yellow oil; $\quad \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \quad(\mathrm{MW}=234.7) ; \quad v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1769 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.03(\mathrm{t}, J 6.9,12 \mathrm{H}), 1.41(\mathrm{t}, J 7.1)$ $\left(\mathrm{CH}_{3}\right), 2.78$ (septet, $\left.J 6.9, \mathrm{CH}\right), 4.44\left(\mathrm{q}, J 7.1, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2,17.0(2 \mathrm{C}), 17.3(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 35.9(2 \mathrm{CH})$, $64.6\left(\mathrm{CH}_{2}\right), 108.0(\mathrm{C}), 162.0(\mathrm{C}=\mathrm{O})$.

1-Benzoylazo-1-chloro-1-methylethane 6u. The title compound was isolated ($1.82 \mathrm{~g}, 86 \%$) as brownish oil; $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$
($\mathrm{MW}=210.7$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1726 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.98\left(\mathrm{CH}_{3}\right), 7.45-7.93$ (several m, phenyl); $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 29.8\left(\mathrm{CH}_{3}\right), 93.8(\mathrm{CCl}), 129.0,129.6,130.2,134.9$ (phenyl), 181.3 (C=O).

Ethyl (1-chloro-1-methylpropyl)diazenecarboxylate 6w. The title compound was isolated ($1.63 \mathrm{~g}, 85 \%$) as a yellow oil (Found: C, 43.36; H, 6.51; N, 14.50. $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$ (MW = 192.6) requires C, $43.64 ; \mathrm{H}, 6.80 ; \mathrm{N}, 14.55 \%)$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 1762 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99(\mathrm{t}, J 7.4), 1.41(\mathrm{t}, J 7.1)$, $1.86\left(\mathrm{CH}_{3}\right), 2.23(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{q}, J 7.1)\left(\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right)$ 8.3, 14.1, 27.9, 35.2, $64.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 97.3(\mathrm{C}), 161.7$ ($\mathrm{C}=\mathrm{O}$).

1-[(1-Chloro-1-methylpropyl)azo]-1,1-dimethylethane 6ab. The title compound was isolated ($1.01 \mathrm{~g}, 57 \%$) as a volatile yellow oil; $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{ClN}_{2}(\mathrm{MW}=176.7) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1474$, 1455; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94(\mathrm{t}, J 7.3), 1.24(9 \mathrm{H}), 1.73$ $\left(\mathrm{CH}_{3}\right), 2.13\left(\mathrm{AA}^{\prime} \mathrm{X}_{3}\right.$ spectrum, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.4$, $26.9(3 \mathrm{C}), 28.2\left(\mathrm{CH}_{3}\right), 35.6\left(\mathrm{CH}_{2}\right), 67.3(\mathrm{C}), 96.7(\mathrm{CCl})$.

1-[(1-Chloro-1-ethyl-2-methylpropyl)azo]-1,1-dimethylethane $\mathbf{6 a c}$. The title compound was isolated $(1.69 \mathrm{~g}, 83 \%)$ as a volatile yellow oil; $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ClN}_{2}(\mathrm{MW}=204.7) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $273 \mathrm{~K}) 0.83$ (t, $J 7.3$), 0.87 (d, $J 6.7$), 1.09 (d, $J 6.8$), 1.27 (9 H) $\left(\mathrm{CH}_{3}\right), 2.21\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.55$ (septet, J 6.7, CH); $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; 273 \mathrm{~K}\right) 7.9,17.1,17.3,27.1(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 32.5,37.0,67.9$ $\left(\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}\right), 104.4(\mathrm{CCl})$.

1-[(2-Chlorotricyclo[3.3.1.1 ${ }^{3,7}$]decan-2-yl)azo]-1,1-dimethyl-

ethane 6 ad. The title compound was isolated ($2.43 \mathrm{~g}, 95 \%$) as a yellow oil; $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClN}_{2}(\mathrm{MW}=254.8) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.27\left(9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76-2.46$ (several m, $14 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}$); $\delta_{\mathrm{C}}(62.9$ MHz ; CDCl_{3}) 26.7 (3 C), 27.1, 27.2, 34.6, 34.7, 38.4, 39.6, 68.0 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 98.7(\mathrm{CCl})$.

Reactions of (1-chloroalkyl)azo compounds 6 with isothiocyanates: general procedure

A solution of $\mathrm{SbCl}_{5}(2.99 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise to a cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of the (1-chloroalkyl)azo compound $\mathbf{6}(10 \mathrm{mmol})$ and the isothiocyanate (12 to $20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 1 h and finally at $+23^{\circ} \mathrm{C}$ for 10 min . After dropwise addition of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ the mixture was kept at $-15^{\circ} \mathrm{C}$ for 12 h . The product was isolated by filtration.

Preparation of the heterocycles $11^{\prime}, 12^{\prime}$ from their salts 11,12 : general procedures

Method A. A solution of $\mathrm{NaOH}(3.20 \mathrm{~g}, 80 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20$ $\mathrm{ml})$ was added to a solution of a salt $\mathbf{1 1}$ or $\mathbf{1 2}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})-\mathrm{MeOH}(6 \mathrm{ml})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and then at $23^{\circ} \mathrm{C}$ for 15 min . Separation of the organic layer and extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 30 \mathrm{ml}$) afforded after usual work-up the heterocycle $\mathbf{1 1}^{\prime}$ or 12'.

Method B. In the manner described for method A. However, the salt $\mathbf{1 1}$ or $\mathbf{1 2}(10 \mathrm{mmol})$ is dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})-$ $\mathrm{MeCN}(6 \mathrm{ml})$.

2,3-Dihydro-4,5-diisopropyl-2-phenylimino-3-(2,4,6-trichloro-phenyl)-1,3,4-thiadiazol-4-ium hexachloroantimonate 9a

From azo compound $\mathbf{6 a}(3.42 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate $(2.03 \mathrm{~g}, 15 \mathrm{mmol})$, title compound 9 a was isolated as a powder ($7.05 \mathrm{~g}, 91 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from warm $\mathrm{MeCN}(30 \mathrm{ml})$ to afford a yellow powder $(6.39 \mathrm{~g}, 82 \%)$; $\mathrm{mp} 213-215^{\circ} \mathrm{C}$ (decomp.) (Found: C, 31.17; H, 2.74; N, 5.42. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=776.3)$ requires $\mathrm{C}, 30.94 ; \mathrm{H}, 2.73 ; \mathrm{N}$,
5.41%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1661$ (br, vs), 1592 (m), 1577 (m), 1564 $(\mathrm{m}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 1.44(\mathrm{~d}, J 6.7,6 \mathrm{H}), 1.62(\mathrm{~d}$, $J 7.0,6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.86$ (septet, $J 6.7$), 4.61 (br m, CH), $6.90-$ 7.49 (several m, phenyl), 7.88 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273\right.$ K) 21.1, $22.8\left(\mathrm{CH}_{3}\right), 33.0,63.7(\mathrm{CH}), 120.9,127.3,130.4(\mathrm{br})$, $131.5,131.6,138.7,141.0,148.4,149.6,179.5$ (br) (aryl, C=N).

2,3-Dihydro-4,5-diisopropyl-2-methylimino-3-(2,4,6-trichloro-

 phenyl)-1,3,4-thiadiazol-4-ium hexachloroantimonate 9bFrom azo compound $\mathbf{6 a}(3.42 \mathrm{~g}, 10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{9 b}$ was precipitated from the reaction mixture with pentane (60 ml) to afford a brownish powder ($6.42 \mathrm{~g}, 89 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})$ to furnish a colourless powder ($5.46 \mathrm{~g}, 76 \%$); mp $168-171{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 25.02; H, 2.75; $\mathrm{N}, 5.85 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=714.2)$ requires $\mathrm{C}, 25.22$; $\mathrm{H}, 2.68 ; \mathrm{N}, 5.88 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1617$ (br, vs), 1555 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 1.50(\mathrm{~d}, J 6.7,6 \mathrm{H}), 1.59(\mathrm{~d}, J 7.0$, $6 \mathrm{H}), 3.07\left(\mathrm{CH}_{3}\right), 3.86$ (septet, $J 6.7$), 4.56 (br m) (CH), 7.82 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 21.1$ (br), 22.8 (br), 33.0 , 43.0, $63.4\left(\mathrm{CH}_{3}, \mathrm{CH}\right), 130.7$ (br), 131.4, 138.7, 140.5, 146.0, 179.8 (br) (aryl, C=N).

2,3-Dihydro-4-isopropyl-5-methyl-2-phenylimino-3-(2,4,6-tri-chlorophenyl)-1,3,4-thiadiazol-4-ium hexachloroantimonate 9 c

From azo compound $\mathbf{6 c}{ }^{8}(3.14 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($2.03 \mathrm{~g}, 15 \mathrm{mmol}$), title compound 9 c was isolated as a yellow powder ($7.08 \mathrm{~g}, 95 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ to afford orange prisms ($6.46 \mathrm{~g}, 86 \%$); mp $156-157^{\circ} \mathrm{C}$ (decomp.) (Found: C, 29.05; $\mathrm{H}, 2.33$; $\mathrm{N}, 5.65 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=748.3)$ requires C, 28.89; H, 2.29; N, 5.62\%); $v_{\max }$ (Nujol)/ $/ \mathrm{cm}^{-1} 1651$ (vs), 1590 (s), 1576 (m), 1566 (m); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1665$ (vs), 1592 (s), $1566(\mathrm{~s}), 1552(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 1.60(\mathrm{~d}, J 7.0$, 6 H), $2.93\left(\mathrm{CH}_{3}\right), 4.57$ (septet, $J 7.0, \mathrm{CH}$), 6.89-7.48 (several m, phenyl), 7.89 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 19.3,20.4$ (2 C) $\left(\mathrm{CH}_{3}\right), 63.1(\mathrm{CH}), 120.8$ (o-C phenyl), 127.2 (p-C phenyl), 129.9, 131.5, 131.6, 138.7, 141.0 (phenyl, aryl), 148.4, 149.6 (i-C phenyl, $\mathrm{C}=\mathrm{N}$), $168.7\left(\mathrm{br}, \mathrm{C}=\mathrm{N}^{+}\right)$.

4,5-Dihydro-4-isopropyl-2,3-dimethyl-5-thioxo-1-(2,4,6-tri-chlorophenyl)-1 H -1,2,4-triazol-2-ium hexachloroantimonate 10d

Compound 10 d was prepared from azo compound $\mathbf{6 d}{ }^{8}(2.86 \mathrm{~g}$, 10 mmol) and isopropyl isothiocyanate ($1.21 \mathrm{~g}, 12 \mathrm{mmol}$). Reprecipitation at $-20^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(8 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ afforded title compound 10 d as yellow needles $(4.56 \mathrm{~g}, 66 \%)$ suitable for X-ray structural analysis; mp 184-186 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 22.53; H, 2.17; N, 5.99. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ (MW = 686.2) requires C, $22.75 ; \mathrm{H}, 2.20 ; \mathrm{N}, 6.13 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1603(\mathrm{~m}), 1566(\mathrm{~s}), 1552(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.69(\mathrm{~d}$, $J 7.0,6 \mathrm{H}), 2.89,3.68\left(\mathrm{CH}_{3}\right), 5.21$ (septet, J 7.0, CH), 7.84 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 13.4,19.3(2 \mathrm{C}), 36.3\left(\mathrm{CH}_{3}\right), 54.5$ (CH), 125.9 (i-C), 131.1 (m-C), 137.9 ($o-\mathrm{C}), 141.3$ ($p-\mathrm{C}), 155.4$, $167.4(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{S})$.

4,5-Dihydro-2,3-dimethyl-4-phenyl-5-thioxo-1-(2,4,6-trichloro-phenyl)-1 H -1,2,4-triazol-2-ium hexachloroantimonate 10e

Compound 10e was prepared from azo compound $\mathbf{6 d}{ }^{8}(2.86 \mathrm{~g}$, 10 mmol) and phenyl isothiocyanate ($1.62 \mathrm{~g}, 12 \mathrm{mmol}$). Reprecipitation at $-20^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ afforded title compound 10e as yellow needles ($3.58 \mathrm{~g}, 50 \%$); mp 185$187^{\circ} \mathrm{C}$ (decomp.) (Found: C, 26.71; H, 1.86; N, 5.74. $\mathrm{C}_{16} \mathrm{H}_{13}{ }^{-}$ $\mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ (MW = 720.1) requires C, 26.68; $\mathrm{H}, 1.82 ; \mathrm{N}, 5.84 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1615(\mathrm{~s}), 1593(\mathrm{~m}), 1566(\mathrm{~s}), 1554(\mathrm{~s}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 2.61,3.76\left(\mathrm{CH}_{3}\right), 7.53-7.75$ (several m, phenyl), 7.90 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right)$ 13.8, $36.8\left(\mathrm{CH}_{3}\right), 126.0$,
131.4, 138.2, 141.7 (aryl), 128.2, 131.7, 132.5, 133.0 (phenyl), 156.3, 168.9 (C=N, C=S).

2,3,5,6,7,8-Hexahydro-1-methyl-2-thioxo-3-(2,4,6-trichloro-phenyl)-1 H - $[1,2,4$]triazolo $[1,5-a$] pyridin-4-ium hexachloroantimonate 10 f

From azo compound $\mathbf{6} \mathbf{f}^{11}(3.12,10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 0 f}$ was obtained as a brown powder ($6.00 \mathrm{~g}, 88 \%$), which was recrystallized at $-20^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{ml})$ to afford pale brown needles ($3.79 \mathrm{~g}, 55 \%$); mp 192-194 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 22.89; H, 1.91; $\mathrm{N}, 6.10 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ ($\mathrm{MW}=684.2$) requires C , 22.82; $\mathrm{H}, 1.92 ; \mathrm{N}, 6.14 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1612(\mathrm{~m}), 1568(\mathrm{~m}), 1555$ (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 3.65\left(\mathrm{CH}_{3}\right), 2.12(\mathrm{~m}, 4 \mathrm{H}), 3.12(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H})\left(\mathrm{CH}_{2}\right), 7.86$ (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right)$ 17.7, 21.6, 23.4, 33.1, $48.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 125.6,131.3,138.0$, 141.6 (aryl), 156.0, 168.5 (C=N, C=S).

1,2,3,5,6,7,8,9-Octahydro-1-methyl-2-thioxo-3-(2,4,6-trichloropheny) $[1,2,4]$ triazolo[$1,5-a]$ azepin-4-ium hexachloroantimonate 10 g
From azo compound $\mathbf{6 g}^{8}(3.26,10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 0 g}$ was obtained as a dark yellow powder ($4.83 \mathrm{~g}, 69 \%$), which was recrystallized at $-20^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(6 \mathrm{ml})$ to afford a yellow powder $(3.28 \mathrm{~g}$, 47%); mp 190-192 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 24.10; H, 2.15; N, 6.05. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=698.2)$ requires C, 24.08; $\mathrm{H}, 2.17$; $\mathrm{N}, 6.02 \%) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1596(\mathrm{~m}), 1566(\mathrm{~s}), 1556(\mathrm{~s}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 3.76\left(\mathrm{CH}_{3}\right), 1.94(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 4.11$ (m, 2 H) (CH_{2}), 7.85 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 22.8,26.1$, 26.7, 28.3, 34.3, $52.5\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 125.8,131.3,138.3,141.7$ (aryl), 160.1, 168.7 (C=N, C=S).

2-Ethyl-4,5-dihydro-3,4-dimethyl-5-thioxo-1-(2,4,6-trichloro-phenyl)-1 H -1,2,4-triazol-2-ium hexachloroantimonate 10 h

From azo compound $\mathbf{6} \mathbf{h}^{8}(3.00,10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 0 h}$ was obtained as a yellow powder ($5.86 \mathrm{~g}, 87 \%$), which was recrystallized at $-20^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})$ to afford a yellow powder $(4.34 \mathrm{~g}$, 65%); mp 198-200 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 21.46; H, 1.98; N, 6.22. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=672.2$) requires C, 21.44; $\mathrm{H}, 1.95$; $\mathrm{N}, 6.25 \%) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1600(\mathrm{~m}), 1568(\mathrm{~m}), 1557$ (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.29(\mathrm{t}, J 7.3), 2.81,3.71\left(\mathrm{CH}_{3}\right), 4.16(\mathrm{q}$, $J 7.3, \mathrm{CH}_{2}$), 7.86 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right.$) 12.9, 14.3, 34.1 $\left(\mathrm{CH}_{3}\right), 46.3\left(\mathrm{CH}_{2}\right), 126.1,131.5,137.9,141.6$ (aryl), 155.7, 168.6 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{S}$).

4,5-Dihydro-3,4-dimethyl-2-phenyl-5-thioxo-1-(2,4,6-trichloro-phenyl)-1 $\mathrm{H}-1,2,4$-triazol-2-ium hexachloroantimonate 10i
Compound $\mathbf{1 0 i}$ was prepared from azo compound $\mathbf{6} \mathbf{i}^{10}(3.48 \mathrm{~g}$, 10 mmol) and methyl isothiocyanate ($7.31 \mathrm{~g}, 100 \mathrm{mmol}$). Addition of $\mathrm{Et}_{2} \mathrm{O}$ to the reaction mixture and keeping the temperature at $-15^{\circ} \mathrm{C}$ for 3 h afforded title compound $\mathbf{1 0 i}$ as a brown powder ($6.09 \mathrm{~g}, 85 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(6 \mathrm{ml})$ to furnish a yellow powder $(3.17 \mathrm{~g}, 44 \%)$; mp 203-205 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 26.61; H, 1.83; N, 5.72. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=720.2)$ requires $\mathrm{C}, 26.68 ; \mathrm{H}, 1.82 ; \mathrm{N}$, $5.83 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1591(\mathrm{~m}), 1564(\mathrm{~s}), 1554(\mathrm{~s}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} \mathrm{CD}_{3} \mathrm{CN}$) 2.68, $3.84\left(\mathrm{CH}_{3}\right), 7.65(\mathrm{~m}, 7 \mathrm{H}$, aryl, phenyl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 13.8,34.4\left(\mathrm{CH}_{3}\right), 126.3,128.8,129.0$, 130.9, 132.0, 135.2, 137.9, 141.3 (aryl, phenyl), 157.4, 168.1 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{S}$). When less than a tenfold excess of methyl isothiocyanate over $6 \mathbf{i}$ was used, 3 -methyl-1-(2,4,6-trichlorophenyl)1 H -indazolium hexachloroantimonate was formed as a side product. ${ }^{10}$

2-Ethyl-4,5-dihydro-4-methyl-3-phenyl-5-thioxo-1-(2,4,6-tri-chlorophenyl)-1 H-1,2,4-triazol-2-ium hexachloroantimonate $\mathbf{1 0 j}$

From azo compound $\mathbf{6 j}$ ($3.62 \mathrm{~g}, 10 \mathrm{mmol}$) and methyl isothio-
cyanate ($1.46 \mathrm{~g}, 20 \mathrm{mmol}$), title compound $\mathbf{1 0} \mathbf{j}$ was isolated as a yellow powder ($6.84 \mathrm{~g}, 93 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(6 \mathrm{ml})-\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ to furnish yellow prisms ($6.42 \mathrm{~g}, 87 \%$); mp $211-213{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, $27.89 ; \mathrm{H}, 2.11 ; \mathrm{N}, 5.76 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=734.2)$ requires C, 27.81; H, 2.06; N, 5.72%); $v_{\text {max }}$ (Nujol)/cm ${ }^{-1} 1603(\mathrm{~m}), 1565$ (s), 1556 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 283 \mathrm{~K}\right) 1.21$ (t, J 7.2), 3.62 $\left(\mathrm{CH}_{3}\right), 4.10\left(\mathrm{q}, J 7.2, \mathrm{CH}_{2}\right), 7.80-7.94$ (m, phenyl), 7.92 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 283 \mathrm{~K}\right) 14.9,35.4\left(\mathrm{CH}_{3}\right), 47.5\left(\mathrm{CH}_{2}\right)$, 118.7, 126.4, 130.9, 131.3, 131.5, 135.9, 137.8, 141.6 (phenyl, aryl), 154.8, 169.1 (C=N, C=S).
N-[2,3-Dihydro-5-isopropyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]methylammonium hexachloroantimonate 11b
From azo compound $\mathbf{6 a}(3.42 \mathrm{~g}, 10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 1 b}$ was isolated as a yellow powder $(4.51 \mathrm{~g}, 67 \%)$, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$-pentane (5 ml) to afford yellow prisms (3.33 g, 50%); mp 221-223 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 21.23; H, 2.01; $\mathrm{N}, 6.15 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=672.2)$ requires C , 21.44; H , $1.95 ; \mathrm{N}, 6.25 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3298,1614$ (br, vs), 1555 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.41$ (d, J 6.8, 6 H), 3.16 (d, $J 4.7)\left(\mathrm{CH}_{3}\right), 3.37$ (septet, $\left.J 6.8, \mathrm{CH}\right), 7.84$ (aryl), 8.34 (br, coupled to $3.16, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 21.8$ (2 C), 32.4, $37.1\left(\mathrm{CH}_{3}, \mathrm{CH}\right), 129.4,131.2,136.5,140.6$ (aryl), 166.2 $(\mathrm{C}=\mathrm{N}), 171.4(\mathrm{SC}=\mathrm{N})$.

N-[2,3-Dihydro-5-methyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]methylammonium hexachloroantimonate 11 k

From azo compound $\mathbf{6 k}{ }^{12}(3.28 \mathrm{~g}, 10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$), title compound 11 k was isolated as a yellow powder ($4.70 \mathrm{~g}, 73 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(7 \mathrm{ml})$ to afford a pale yellow powder (3.61 g, 56%); mp 214-216 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 18.78; H, 1.53; $\mathrm{N}, 6.28 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=644.1)$ requires $\mathrm{C}, 18.64 ; \mathrm{H}$, $1.41 ; \mathrm{N}, 6.52 \%$); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3298,1621$ (br, vs), 1556 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 2.68,3.14(\mathrm{~d}, J 4.9)\left(\mathrm{CH}_{3}\right), 7.85$ (aryl), 8.13 (br, coupled to $3.14, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 17.3$, $37.0\left(\mathrm{CH}_{3}\right), 129.4,131.3,136.5,140.7$ (aryl), $156.5(\mathrm{C}=\mathrm{N}), 171.8$ ($\mathrm{SC=N}$).

2,3-Dihydro-5-methyl-2-methylimino-3-(2,4,6-trichlorophenyl)-1,3,4-thiadiazole 11^{\prime} k

Compound $\mathbf{1 1}^{\mathbf{\prime}} \mathbf{k}$ was prepared from salt $\mathbf{1 1 k}(6.44 \mathrm{~g}, 10 \mathrm{mmol})$ (method A). Crystallization at $-15^{\circ} \mathrm{C}$ from CHCl_{3} (6 ml) afforded title compound $\mathbf{1 1}^{\prime} \mathbf{k}$ as an orange powder $(1.74 \mathrm{~g}$, 57%); mp 123-125 ${ }^{\circ} \mathrm{C}$ (Found: C, 39.12; H, 2.80; N, 13.52. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}$ (MW $=308.6$) requires $\mathrm{C}, 38.91 ; \mathrm{H}, 2.61 ; \mathrm{N}$, 13.61%); $v_{\max }$ (Nujol)/cm ${ }^{-1} 1652$ (br, vs), 1570 (m), 1552 (m); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.44,3.03\left(\mathrm{CH}_{3}\right), 7.44$ (aryl); $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.0,44.2\left(\mathrm{CH}_{3}\right), 128.9,133.5,135.9,136.5$ (aryl), 145.9 (C=N), 156.7 ($\mathrm{SC=N}$).

2,3-Dihydro-5-isopropyl-2-methylimino-3-(4-nitrophenyl)-1,3,4thiadiazole 11'I

Compound 111 was prepared from azo compound $\mathbf{6 1}(2.84 \mathrm{~g}$, $10 \mathrm{mmol})$ and methyl isothiocyanate ($0.88 \mathrm{~g}, 12 \mathrm{mmol}$). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h . The impure orange hexachloroantimonate $111(4.91 \mathrm{~g}, 80 \%)$ was transformed into title compound $\mathbf{1 1}^{\prime} \mathbf{1}$ (method B). Crystallization at $-15^{\circ} \mathrm{C}$ from hot $\mathrm{EtOH}(40 \mathrm{ml})$ afforded pale brown needles ($1.82 \mathrm{~g}, 66 \%$); $\mathrm{mp} 114-116^{\circ} \mathrm{C}$ (Found: C, 51.52; H, 5.09; N, 19.69. $\mathrm{C}_{12} \mathrm{H}_{14}{ }^{-}$ $\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{~S}(\mathrm{MW}=278.3)$ requires $\left.\mathrm{C}, 51.78 ; \mathrm{H}, 5.07 ; \mathrm{N}, 20.13 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1636(\mathrm{br}, \mathrm{vs}), 1593(\mathrm{vs}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.36 (d, $J 6.9,6 \mathrm{H}$), $3.17\left(\mathrm{CH}_{3}\right), 3.07$ (septet, $J 6.9, \mathrm{CH}$), 8.21 (m, $2 \mathrm{H}), 8.33(\mathrm{~m}, 2 \mathrm{H})$ (aryl); $\delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.3$ (2 C), 32.2 $\left(\mathrm{CH}_{3}\right), 44.5(\mathrm{CH}), 119.5,124.4,143.3,145.7,155.6,157.0$ (aryl, $\mathrm{C}=\mathrm{N})$.

N-[2,3-Dihydro-5-isopropyl-3-(4-nitrophenyl)-1,3,4-thiadiazol-

 ylidene]-tert-butylammonium hexachloroantimonate 11mFrom azo compound $\mathbf{6 1}(2.84 \mathrm{~g}, 10 \mathrm{mmol})$ and tert-butyl isothiocyanate ($1.38 \mathrm{~g}, 12 \mathrm{mmol}$), title compound 11 m was obtained as a brown powder ($5.77 \mathrm{~g}, 88 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ to afford a pale brown powder ($4.15 \mathrm{~g}, 63 \%$); mp $225-229^{\circ} \mathrm{C}$ (decomp.) (Found: C, 27.59; H, 3.29; N, 8.62. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{Cl}_{6}$ $\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{SSb}(\mathrm{MW}=655.9)$ requires $\mathrm{C}, 27.47$; $\mathrm{H}, 3.23$; $\mathrm{N}, 8.54 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3356,1614(\mathrm{~s}), 1588(\mathrm{vs}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right)$ $1.41(\mathrm{~d}, J 6.9,6 \mathrm{H}), 1.48(9 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.35$ (septet, $\left.J 6.9, \mathrm{CH}\right)$, 7.87 (m, 2 H$), 8.46(\mathrm{~m}, 2 \mathrm{H})$ (aryl), $7.52(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz} ;$ $\left.\mathrm{CD}_{3} \mathrm{CN}\right) 21.9(2 \mathrm{C}), 27.6(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 31.9,59.0(\mathrm{C}, \mathrm{CH}), 127.1$, 129.1, 141.1, 150.3, 165.6, 166.7 (aryl, C=N).

2-tert-Butylimino-2,3-dihydro-5-isopropyl-3-(4-nitrophenyl)-1,3,4-thiadiazole $11^{\prime} \mathrm{m}$

Compound $\mathbf{1 1}^{\prime} \mathbf{m}$ was prepared from salt $\mathbf{1 1 m}(6.56 \mathrm{~g}, 10 \mathrm{mmol})$ (method A). After crystallization at $-15^{\circ} \mathrm{C}$ from hot EtOH (10 ml) title compound $\mathbf{1 1}^{\prime} \mathrm{m}$ was obtained as an orange crystalline powder ($2.10 \mathrm{~g}, 66 \%$); mp $84-85^{\circ} \mathrm{C}$ (Found: C, 56.25 ; H, 6.28 ; $\mathrm{N}, 17.48 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (MW $=320.4$) requires $\mathrm{C}, 56.23$; H , $6.29 ; \mathrm{N}, 17.49 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1632$ (br, vs), 1592 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34(9 \mathrm{H}), 1.35(\mathrm{~d}, J 6.9,6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.03$ (septet, $J 6.9, \mathrm{CH}$), $8.20(\mathrm{~m}, 2 \mathrm{H}), 8.40(\mathrm{~m}, 2 \mathrm{H})$ (aryl); $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.3(2 \mathrm{C}), 27.9(3 \mathrm{C})\left(\mathrm{CH}_{3}\right), 32.1,54.8(\mathrm{C}, \mathrm{CH})$, $119.9,124.2,143.0,145.8,146.3,156.8$ (aryl, C=N).

N-[2,3-Dihydro-5-methyl-3-(1,2,4-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]cyclohexylammonium hexachloroantimonate 11 n

From azo compound $\mathbf{6}{ }^{31}(2.72 \mathrm{~g}, 10 \mathrm{mmol})$ and cyclohexyl isothiocyanate ($1.70 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 1 n}$ was isolated as a brown powder $(5.76 \mathrm{~g}, 81 \%)$, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. Addition of pentane (35 ml) and crystallization at $-15^{\circ} \mathrm{C}$ afforded fine yellow prisms ($4.72 \mathrm{~g}, 66 \%$); mp $222-$ $226^{\circ} \mathrm{C}$ (decomp.) (Found: C, 25.36; H, 2.45; N, 5.86. $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{-}$ $\mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ (MW $=712.2$) requires $\mathrm{C}, 25.30 ; \mathrm{H}, 2.41 ; \mathrm{N}, 5.90 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3287,1606$ (vs), 1557 (vs); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{CN}\right) 2.68\left(\mathrm{CH}_{3}\right), 1.12-2.07$ (several m, $\left.10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.33$ (br m, CH), 7.83 (aryl), 8.05 (br d, $J 7.6$, coupled to 3.33 , NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 17.3,25.2,25.3,32.2,64.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, CH), 129.6, 131.2, 136.4, 140.5 (aryl), 156.4, 169.5 (C=N)

2-Cyclohexylimino-2,3-dihydro-5-methyl-3-(1,2,4-trichloro-phenyl)-1,3,4-thiadiazole 11'n

Compound 11'n was prepared from 11n ($7.12 \mathrm{~g}, 10 \mathrm{mmol}$) (method B). Crystallization at $-15^{\circ} \mathrm{C}$ from hot EtOH (5 ml) afforded title compound $\mathbf{1 1}^{\prime} \mathbf{n}$ as prisms ($3.26 \mathrm{~g}, 87 \%$); mp $65-6{ }^{\circ} \mathrm{C}$ (Found: C, 47.77 ; $\mathrm{H}, 4.23$; N, 11.24. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}$ ($\mathrm{MW}=376.7$) requires $\mathrm{C}, 47.82 ; \mathrm{H}, 4.28 ; \mathrm{N}, 11.16 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1645(\mathrm{br}, \mathrm{vs}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.38\left(\mathrm{CH}_{3}\right)$, 1.18-1.74 (several m, $10 \mathrm{H}, \mathrm{CH}_{2}$), 2.56 (br, CH), 7.41 (aryl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9,24.9,25.7,33.3,68.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, CH), 128.8, 134.1, 135.4, 136.6, 145.5 (br), 151.9 (br) (aryl, $\mathrm{C}=\mathrm{N}$).
N-[3-tert-Butyl-5-ethyl-2,3-dihydro-1,3,4-thiadiazol-2-ylidene]phenylammonium hexachloroantimonate 11o
From azo compound $\mathbf{6 0}^{31}(1.63 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($1.62 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 1 0}$ was obtained as a grey powder $(3.64 \mathrm{~g}, 61 \%)$, which was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(35 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(35 \mathrm{ml})$ to afford a pale yellow powder ($2.33 \mathrm{~g}, 39 \%$); mp $141-144^{\circ} \mathrm{C}$ (decomp.) (Found: C, 28.29; $\mathrm{H}, 3,34 ; \mathrm{N}, 6.96 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=596.9)$ requires C, 28.17; H, 3.38; N, 7.04\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3392,1595$ (s), 1574 (s), 1538 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.26(\mathrm{t}, J 7.5), 1.79$ $(9 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.84\left(\mathrm{q}, J 7.5, \mathrm{CH}_{2}\right), 7.47-7.62(\mathrm{~m}$, phenyl), 8.76
(br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right.$) 12.9, 24.8, 28.5 (3 C), 67.9 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 126.7,131.0,131.7,140.4$ (phenyl), 158.6, 170.6 ($\mathrm{C}=\mathrm{N}$).

3-tert-Butyl-5-ethyl-2,3-dihydro-2-phenylimino-1,3,4-thiadiazole 11'o

From salt 110 ($5.97 \mathrm{~g}, 10 \mathrm{mmol}$) (method B), title compound $\mathbf{1 1}^{\prime} \mathbf{o}$ was obtained as fine orange prisms ($1.73 \mathrm{~g}, 66 \%$); mp $62-$ $64{ }^{\circ} \mathrm{C}$ (Found: C, 64.63; H, 7.38; N, 16.20. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}$ (MW = 261.4) requires C, $64.33 ; \mathrm{H}, 7.33 ; \mathrm{N}, 16.08 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1614 (br, vs), 1587 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.17 (t, J7.6), 1.67 $(9 \mathrm{H})\left(\mathrm{CH}_{3}\right), 2.58\left(\mathrm{q}, J 7.6, \mathrm{CH}_{2}\right), 7.00-7.34$ (several m, phenyl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.5,25.2,28.1$ (3 C), $61.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, C), 121.0, 122.9, 129.4, 146.0 (phenyl), 153.3, $156.5(\mathrm{C}=\mathrm{N})$.

N-[2,3-Dihydro-5-propyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]phenylammonium hexachloroantimonate 11p

From azo compound $6 \mathbf{p}^{31}$ ($3.00 \mathrm{~g}, 10 \mathrm{mmol}$) and phenyl isothiocyanate ($1.62 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 1} \mathbf{p}$ was obtained as a pale brown powder ($5.88 \mathrm{~g}, 80 \%$), which was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$-pentane (25 ml) to afford yellow prisms ($5.41 \mathrm{~g}, 74 \%$); $\mathrm{mp} 140-142{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 27.83; $\mathrm{H}, 2.08 ; \mathrm{N}, 5.66 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=734.2)$ requires $\mathrm{C}, 27.81 ; \mathrm{H}, 2.06 ; \mathrm{N}, 5.72 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3251,1604$ (vs), 1581 (vs), 1544 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.01\left(\mathrm{t}, J 7.4, \mathrm{CH}_{3}\right)$, $1.80(\mathrm{~m}), 2.99(\mathrm{t}, J 7.3)\left(\mathrm{CH}_{2}\right), 7.44-7.64$ (m, phenyl), 7.90 (aryl), 9.85 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 13.3,22.4,33.0$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 124.5,129.6,131.0,131.4,131.8,136.3,138.1$, 140.8 (phenyl, aryl), 161.2, $171.2(\mathrm{C}=\mathrm{N})$.

N-[2,3-Dihydro-5-propyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]phenylammonium picrate 11*p

Compound $\mathbf{1 1} \mathbf{1} \mathbf{p}$ was prepared from salt $\mathbf{1 1 p}(7.34 \mathrm{~g}, 10 \mathrm{mmol})$ $(\operatorname{method} \mathrm{A})$. The oily base was dissolved in a saturated solution of picric acid (ca. $3.44 \mathrm{~g}, 15 \mathrm{mmol}$) in EtOH. Crystallization at $-15^{\circ} \mathrm{C}$ afforded title compound $11^{*} \mathbf{p}$ as a yellow powder $(5.37 \mathrm{~g}$, 86%); mp 138-140 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.96; H, 2.68; N, 13.27. $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}(\mathrm{MW}=627.8)$ requires $\mathrm{C}, 44.00 ; \mathrm{H}$, 2.73; N, 13.39\%); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1631$ (br, vs), 1590 (s), $1552(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04\left(\mathrm{t}, J 7.4, \mathrm{CH}_{3}\right), 1.78(\mathrm{~m})$, 2.82 (t, J 7.3) $\left(\mathrm{CH}_{2}\right), 7.23-7.42$ (m, phenyl), 8.91 (aryl), 12.08 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.2,21.5,32.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)$, 122.7 (br), 126.2, 127.4 (br), 129.1, 130.1, 130.9, 132.3, 135.9, 137.8, 139.5, 144.3 (br), 154.7 (br), 157.6, 163.8 (br) (phenyl, aryl, $\mathrm{C}=\mathrm{N}$).
N-[2,3-Dihydro-5-isopropyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]cyclohexylammonium hexachloroantimonate 11q

From azo compound $\mathbf{6 q}{ }^{31}(3.00 \mathrm{~g}, 10 \mathrm{mmol})$ and cyclohexyl isothiocyanate ($1.70 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 1 q}$ was obtained as a pale orange powder ($5.12 \mathrm{~g}, 69 \%$), which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})-\mathrm{MeCN}(0.5 \mathrm{ml})$. Addition of pentane (30 ml) and crystallization at $-15^{\circ} \mathrm{C}$ afforded a powder ($3.65 \mathrm{~g}, 49 \%$); mp 172-179 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 27.54; H, 2.90; $\mathrm{N}, 5.76 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ ($\mathrm{MW}=740.3$) requires $\mathrm{C}, 27.58$; $\mathrm{H}, 2.86 ; \mathrm{N}, 5.68 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3286,1602$ (br, vs), 1550 (vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.40\left(\mathrm{~d}, J 6.8, \mathrm{CH}_{3}\right), 1.19-2.07$ (several m, $10 \mathrm{H}, \mathrm{CH}_{2}$), 3.34 (br m), 3.36 (septet, J 6.8) (CH), 7.83 (aryl), 8.07 (br d, $J 7.9$, coupled to $3.34, \mathrm{NH}$); $\delta_{\mathrm{c}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 21.8,25.3,32.2,32.3,64.5\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right)$, 129.7, 131.2, 136.4, 140.5 (aryl), 166.2, 169.2 (C=N).
N-[2,3-Dihydro-5-isopropyl-3-(2,4,6-trichlorophenyl)-1,3,4-thia-diazol-2-ylidene]cyclohexylammonium picrate $11 * q$
Compound $\mathbf{1 1}^{\prime} \mathbf{q}$ was prepared from salt $\mathbf{1 1 q}(7.40 \mathrm{~g}, 10 \mathrm{mmol})$ $(\operatorname{method} \mathrm{A})$. The oily base was transformed into the picrate in the manner described for 11p. Title compound 11q was obtained
as yellow prisms ($4.88 \mathrm{~g}, 77 \%$); mp $193-195^{\circ} \mathrm{C}$ (decomp.) (Found: C, 43.84; H, 3.77; N, 12.86. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}$ (MW = 633.9) requires C, $43.58 ; \mathrm{H}, 3.66 ; \mathrm{N}, 13.26 \%)$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 1631(\mathrm{vs}), 1620(\mathrm{vs}), 1563(\mathrm{vs}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45$ (d, $J 6.8, \mathrm{CH}_{3}$), 1.13-2.11 (several m, $10 \mathrm{H}, \mathrm{CH}_{2}$), $3.16(\mathrm{~m}, 1 \mathrm{H}$), 3.28 (septet, $J 6.8,1 \mathrm{H})(\mathrm{CH}), 7.26(2 \mathrm{H}), 8.80(2 \mathrm{H})($ aryl), 11.14 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 21.6, 24.5, 25.0, 31.1, 31.6, 65.6 $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 126.2,127.9,129.1,129.2,135.8,138.6,141.0$, 160.2, 162.0, 166.2 (aryl, C=N).

N-[3-Ethoxycarbonyl-2,3-dihydro-5-methyl-1,3,4-thiadiazol-2ylidene]phenylammonium hexachloroantimonate 11 r

From azo compound $\mathbf{6 r}(2.07 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($2.03 \mathrm{~g}, 15 \mathrm{mmol}$), title compound $\mathbf{1 1 r}$ was isolated as an orange powder $(3.64 \mathrm{~g}, 61 \%)$, which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})$ to afford pale yellow prisms (2.43 g, 41%); mp $168-170^{\circ} \mathrm{C}$ (decomp.) (Found: C, 24.28; H, 2.40; $\mathrm{N}, 7.20 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SSb}(\mathrm{MW}=598.8)$ requires $\mathrm{C}, 24.06$; $\mathrm{H}, 2.36 ; \mathrm{N}, 7.02 \%$); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3276,1751$ (vs), 1617 (vs), $1567(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.47\left(\mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 4.66(\mathrm{q}$, $J 7.1, \mathrm{CH}_{2}$), 7.49-7.65 (several m, phenyl), 11.09 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 14.3,17.0\left(\mathrm{CH}_{3}\right), 69.0\left(\mathrm{CH}_{2}\right), 125.6$, 131.7, 131.8, 138.9, 150.2, 154.2, 174.7 (phenyl, $\mathrm{C}=$).
N-[3-Ethoxycarbonyl-5-ethyl-2,3-dihydro-1,3,4-thiadiazol-2ylidene]phenylammonium hexachloroantimonate 11s
From azo compound $\mathbf{6 s}(2.21 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($2.03 \mathrm{~g}, 15 \mathrm{mmol}$), title compound 11 s was isolated as a pale yellow powder ($3.25 \mathrm{~g}, 53 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(10 \mathrm{ml})$ to afford a powder $(2.21 \mathrm{~g}, 36 \%)$; $\mathrm{mp} 158-160^{\circ} \mathrm{C}$ (decomp.) (Found: C, 25.74; H, 2.66; N, 6.89. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SSb}(\mathrm{MW}=612.8$) requires C, 25.48; $\mathrm{H}, 7.63 ; \mathrm{N}$, 6.86%); $v_{\max }$ (Nujol) $/ \mathrm{cm}^{-1} 3278,1748$ (vs), 1614 (s), 1592 (m), $1562(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.29(\mathrm{t}, J 7.5), 1.47(\mathrm{t}, J 7.1)$ $\left(\mathrm{CH}_{3}\right), 2.93(\mathrm{q}, J 7.9), 4.67(\mathrm{q}, J 7.1)\left(\mathrm{CH}_{2}\right), 7.48-7.65$ (several m , phenyl), 11.11 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 12.7,14.3$ $\left(\mathrm{CH}_{3}\right), 25.1,69.1\left(\mathrm{CH}_{2}\right), 125.8,131.8,131.9,139.1,150.4,159.7$, 174.7 (phenyl, $\mathrm{C}=$).

Ethyl 5-ethyl-2,3-dihydro-2-phenylimino-1,3,4-thiadiazole-3carboxylate 11's

From salt 11s $(6.13 \mathrm{~g}, 10 \mathrm{mmol})($ method B), title compound 11's was isolated as an oil ($2.44 \mathrm{~g}, 88 \%$), which crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ to afford a powder $(2.00 \mathrm{~g}, 72 \%)$; $\mathrm{mp} 92-93{ }^{\circ} \mathrm{C}$ (Found: C, 56.34; H, 5.49; N, 15.19. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ ($\mathrm{MW}=277.3$) requires $\mathrm{C}, 56.30 ; \mathrm{H}, 5.45 ; \mathrm{N}, 15.15 \%$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1757$ (vs), 1637 (br, vs), 1592 (s); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22(\mathrm{t}, J 7.6), 1.45(\mathrm{t}, J 7.2)\left(\mathrm{CH}_{3}\right), 2.70(\mathrm{q}, J 7.6)$, $4.50(\mathrm{q}, J 7.1)\left(\mathrm{CH}_{2}\right), 7.00-7.39$ (several m, phenyl); $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.3,14.4\left(\mathrm{CH}_{3}\right), 25.5,64.1\left(\mathrm{CH}_{2}\right), 120.2,124.7$, 129.6, 149.6, 152.4, 153.6, 154.0 (phenyl, $\mathrm{C}=$).

N-[3-Ethoxycarbonyl-2,3-dihydro-5-isopropyl-1,3,4-thiadiazol-2-ylidene]phenylammonium hexachloroantimonate 11t

From azo compound $6 \mathbf{t}(2.35 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($2.03 \mathrm{~g}, 15 \mathrm{mmol}$), title compound 11t was isolated as a yellow powder ($3.19 \mathrm{~g}, 51 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(5 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ to afford a yellow powder ($2.27 \mathrm{~g}, 36 \%$); mp $185-187^{\circ} \mathrm{C}$ (decomp.) (Found: C, 26.79; $\mathrm{H}, 2.84 ; \mathrm{N}, 6.56 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SSb}(\mathrm{MW}=626.8)$ requires C , 26.82; H, 2.89; N, 6.70\%); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3236,1761$ (vs), 1611 (vs), 1591 (s), 1560 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right.$) 1.33 (d, $J 6.9,6 \mathrm{H}), 1.48(\mathrm{t}, J 7.0)\left(\mathrm{CH}_{3}\right), 3.27$ (septet, $\left.J 6.9\right), 4.67(\mathrm{q}$, $J 7.0)\left(\mathrm{CH}_{2}\right), 7.50-7.69$ (several m, phenyl), 9.46 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 14.3,21.7(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 32.1,69.0$ $\left(\mathrm{CH}_{2}\right), 125.7,131.7,131.8,139.0,150.3,164.0,174.4$ (phenyl, $\mathrm{C}=$).

2,5-Dihydro-2-(isopropylimino)-5,5-dimethyl-1,3,4-thiadiazol-3ium hexachloroantimonate $\mathbf{1 2 u}(\equiv 12 \mathrm{v}, 12 \mathrm{y})$
(a) From azo compound $\mathbf{6 u}(2.11 \mathrm{~g}, 10 \mathrm{mmol})$ and isopropyl isothiocyanate ($2.02 \mathrm{~g}, 20 \mathrm{mmol}$), title compound $\mathbf{1 2 u}$ was obtained as a brown powder ($3.38 \mathrm{~g}, 67 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(6 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ to afford an ochreous powder ($2.98 \mathrm{~g}, 59 \%$); mp $154-156^{\circ} \mathrm{C}$ (decomp.) (Found: C, 16.77; H, 2.78; N, 8.13. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=$ 506.7) requires C, $16.59 ; \mathrm{H}, 2.78 ; \mathrm{N}, 8.29 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 3213,1636 (br, vs), $1546(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 1.51(\mathrm{~d}$, $J 6.5,6 \mathrm{H}), 2.05(6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.98$ (septet, $\left.J 6.5, \mathrm{CH}\right), 11.66$ (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 20.4(2 \mathrm{C}), 26.0(2 \mathrm{C})\left(\mathrm{CH}_{3}\right)$, 58.3 (CH), 121.7 (C5), 187.9 (br, C=N).
(b) From azo compound $\mathbf{6 v}{ }^{14}(1.79 \mathrm{~g}, 10 \mathrm{mmol})$ and isopropyl isothiocyanate ($2.02 \mathrm{~g}, 20 \mathrm{mmol}$), title compound $\mathbf{1 2 \mathrm { u }}$ was obtained as a brown powder ($4.25 \mathrm{~g}, 84 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ to afford a brown powder ($2.81 \mathrm{~g}, 56 \%$); mp $154-156^{\circ} \mathrm{C}$ (decomp.).
(c) From azo compound $6 \mathbf{y}^{8}(1.63 \mathrm{~g}, 10 \mathrm{mmol})$ and isopropyl isothiocyanate ($1.21 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 2 u}$ was obtained as a powder ($4.00 \mathrm{~g}, 79 \%$); mp $152-153^{\circ} \mathrm{C}$ (decomp.).

2,5-Dihydro-2-(isopropylimino)-5,5-dimethyl-1,3,4-thiadiazole 12'u

From salt $\mathbf{1 2 u}(5.07 \mathrm{~g}, 10 \mathrm{mmol})($ method A), prisms of title compound 12 'u were isolated ($1.52 \mathrm{~g}, 89 \%$); $\mathrm{mp} 64-66^{\circ} \mathrm{C}$ (Found: C, 49.21; H, 7.63; N, 24.11. $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{MW}=171.3)$ requires C, $49.09 ; \mathrm{H}, 7.65 ; \mathrm{N}, 24.54 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1652$ (br, vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33$ (d, $J 6.3,6 \mathrm{H}$), 1.83 $(6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 3.31$ (septet, $\left.J 6.3, \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $22.5(2 \mathrm{C}), 28.6(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 60.5(\mathrm{CH}), 105.6(\mathrm{C} 5), 174.3$ ($\mathrm{C}=\mathrm{N}$).

5-Ethyl-2,5-dihydro-5-methyl-2-(phenylimino)-1,3,4-thiadiazol-3-ium hexachloroantimonate 12w ($\equiv 12 \mathrm{ab}$)
(a) From azo compound $\mathbf{6 w}(1.93 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($2.03 \mathrm{~g}, 15 \mathrm{mmol}$), title compound $\mathbf{1 2 w}$ was obtained as a dark yellow powder ($3.31 \mathrm{~g}, 60 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ to afford a pale brown powder ($2.34 \mathrm{~g}, 42 \%$); mp 148-150 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 24.04; H, 2.49; N, 7.45. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=554.8)$ requires C, 23.81; H, 2.54; $\mathrm{N}, 7.57 \%)$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3177$, 1626 (vs), 1541 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right.$) 0.91 (t, $J 7.4), 2.09\left(\mathrm{CH}_{3}\right), 2.57\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 7.74(\mathrm{~m}$, phenyl), 9.96 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 9.8$, $24.4,33.2\left(\mathrm{CH}_{3}\right.$, CH_{2}), 123.0 (C5), 128.0, 131.8, 132.7, 135.5 (phenyl), 183.7 ($\mathrm{C}=\mathrm{N}$).
(b) Compound $\mathbf{1 2 w}$ was prepared from azo compound $\mathbf{6 a b}$ $(1.77 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($1.62 \mathrm{~g}, 12 \mathrm{mmol}$). However, in place of $\mathrm{Et}_{2} \mathrm{O}$ pentane (50 ml) was added to the reaction mixture. After 12 h at $-15^{\circ} \mathrm{C}$ title compound $\mathbf{1 2 w}$ was obtained as a dark yellow powder ($3.96 \mathrm{~g}, 71 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(6 \mathrm{ml})$ to furnish a pale brown powder ($3.15 \mathrm{~g}, 57 \%$); $148-150^{\circ} \mathrm{C}$ (decomp.).

5-Ethyl-2,5-dihydro-5-methyl-2-(phenylimino)-1,3,4-thiadiazole

 12'wFrom salt 12w ($5.55 \mathrm{~g}, 10 \mathrm{mmol}$) (method A), title compound $\mathbf{1 2}^{\prime} \mathbf{w}$ was isolated as a yellow powder ($1.74 \mathrm{~g}, 79 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ to afford a yellow powder ($1.26 \mathrm{~g}, 58 \%$); mp $58-60^{\circ} \mathrm{C}$ (decomp.) (Found: C, 60.10 ; $\mathrm{H}, 6.10 ; \mathrm{N}, 18.31 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{MW}=219.3)$ requires $\mathrm{C}, 60.24$; H, 5.97 ; N, 19.16%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1623$ (br, vs), 1588 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(\mathrm{t}, J 7.4), 1.86\left(\mathrm{CH}_{3}\right), 2.21\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, 7.22-7.48 (several m, phenyl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.1,26.6$, $33.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 111.9(\mathrm{C} 5), 121.1,126.8,129.4,148.2$ (phenyl), $174.3(\mathrm{C}=\mathrm{N})$.

5-Ethyl-2,5-dihydro-5-methyl-2-(methylimino)-1,3,4-thiadiazol-3-ium hexachloroantimonate 12 x
Compound $\mathbf{1 2 x}$ was prepared from azo compound $\mathbf{6 w}(1.93 \mathrm{~g}$, 10 mmol) and methyl isothiocyanate ($1.46 \mathrm{~g}, 20 \mathrm{mmol}$) in the manner described for $\mathbf{1 2 w}$. Title compound $\mathbf{1 2 x}$ was obtained as a yellow powder ($3.56 \mathrm{~g}, 72 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(4 \mathrm{ml})$ to furnish a yellow powder $(2.35 \mathrm{~g}$, 48%); mp 118-120 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 14.38; H, 2.45; N, 8.53. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=492.7)$ requires $\mathrm{C}, 14.63 ; \mathrm{H}, 2.45$; $\mathrm{N}, 8.53 \%$); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3233,1646$ (br, vs), 1544 (m); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right) 0.86(\mathrm{t}, J 7.3), 2.06,3.55\left(\mathrm{CH}_{3}\right)$, $2.53\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 10.08(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN} ; 273 \mathrm{~K}\right)$ 9.6, 24.7, 33.2, $38.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 126.4(\mathrm{C} 5), 189.7(\mathrm{C}=\mathrm{N})$.

2,5-Dihydro-5,5-dimethyl-2-(phenylimino)-1,3,4-thiadiazol-3ium hexachloroantimonate 12 z

From azo compound $\mathbf{6 y}{ }^{8}(1.63 \mathrm{~g}, 10 \mathrm{mmol})$ and phenyl isothiocyanate ($1.62 \mathrm{~g}, 12 \mathrm{mmol}$), title compound $\mathbf{1 2 z}$ was obtained as a yellow powder $(4.86 \mathrm{~g}, 90 \%)$, which was crystallized at $-15^{\circ} \mathrm{C}$ from warm $\mathrm{MeCN}(6 \mathrm{ml})$ to furnish pale yellow needles $(2.98 \mathrm{~g}$, 55%); $125-127^{\circ} \mathrm{C}$ (decomp.) (Found: C, 22.26; H, 2.23; N, 7.76. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=540.8)$ requires $\mathrm{C}, 22.21 ; \mathrm{H}, 2.24 ; \mathrm{N}$, $7.77 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3214,1626(\mathrm{vs}), 1539(\mathrm{~s}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{CN}\right) 2.09\left(6 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.72 (m, phenyl), 11.46 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 26.0\left(\mathrm{CH}_{3}\right), 122.4(\mathrm{C}), 122.9,131.8$, 132.5, 136.0 (phenyl), 184.1 (br, $\mathrm{C}=\mathrm{N}$).

2,5-Dihydro-5,5-dimethyl-2-(phenylimino)-1,3,4-thiadiazole $12^{\prime} \mathrm{z}^{37}$

From salt $\mathbf{1 2 y}(5.41 \mathrm{~g}, 10 \mathrm{mmol})$ (method A), title compound $\mathbf{1 2}^{\prime} \mathbf{z}$ was obtained as a yellow powder ($1.97 \mathrm{~g}, 96 \%$). Crystallization at $-15^{\circ} \mathrm{C}$ from a dilute solution in cyclohexane afforded pale green needles suitable for X-ray crystallographic analysis; $\mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$ (lit. ${ }^{37} 100-102{ }^{\circ} \mathrm{C}$). $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{MW}=205.3)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640(\mathrm{br}, \mathrm{vs}), 1554(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.87\left(\mathrm{CH}_{3}\right), 7.23-8.48$ (several m, phenyl); $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 28.3\left(\mathrm{CH}_{3}\right), 106.9(\mathrm{C} 5), 121.1,126.8,129.4,148.2$ (phenyl), 174.3 (C=N); EI-MS m/z 177 ($\mathrm{M}-\mathrm{N}_{2}, 16 \%$), 74 ($\mathrm{Me}_{2} \mathrm{C}=\mathrm{S}^{+}, 100 \%$).

2-(Allylimino)-2,5-dihydro-5,5-dimethyl-1,3,4-thiadiazol-3-ium hexachloroantimonate 12aa

From azo compound $6 \mathbf{y y}^{8}(1.63 \mathrm{~g}, 10 \mathrm{mmol})$ and isopropyl isothiocyanate ($1.19 \mathrm{~g}, 12 \mathrm{mmol}$), title compound 12aa was obtained as a yellow powder $(4.50 \mathrm{~g}, 89 \%) ; \mathrm{mp} 116-121^{\circ} \mathrm{C}$ (decomp.) (Found: C, 16.76; H, 2.43; N, 8.18. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}$ (MW = 504.8) requires C, $16.66 ; \mathrm{H}, 2.40 ; \mathrm{N}, 8.33 \%$); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3224,1628(\mathrm{br}, \mathrm{vs}), 1545(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 2.05$ $\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.54(\mathrm{~m}), 5.95(\mathrm{~m})(\mathrm{CH}), 10.85(\mathrm{br}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 26.0\left(\mathrm{CH}_{3}\right), 54.5\left(\mathrm{CH}_{2}\right), 122.1$ (C5), 123.7, 127.5 ($\mathrm{C}=$), 189.3 (C=N).

2-(Allylimino)-2,5-dihydro-5,5-dimethyl-1,3,4-thiadiazole 12' aa

From salt 12aa $(5.05 \mathrm{~g}, 10 \mathrm{mmol})($ method A), title compound 12' aa was obtained as a yellow oil ($1.44 \mathrm{~g}, 85 \%$); mp $97-99^{\circ} \mathrm{C}$ (Found: C, 49.46; H, 6.65; N, 24.74. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{MW}=169.2)$ requires C, $49.68 ; \mathrm{H}, 6.55 ; \mathrm{N}, 24.84 \%)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1652$ (br, vs); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85\left(\mathrm{CH}_{3}\right), 4.06(\mathrm{~m}, 2 \mathrm{H}), 5.28$ $(\mathrm{m}), 6.08(\mathrm{~m})(\mathrm{CH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.4\left(\mathrm{CH}_{3}\right), 60.8$ $\left(\mathrm{CH}_{2}\right), 106.3(\mathrm{C} 5), 116.9,133.4(\mathrm{C}=), 176.9(\mathrm{C}=\mathrm{N})$.

5-Ethyl-2,5-dihydro-5-isopropyl-2-(methylimino)-1,3,4-thia-diazol-3-ium hexachloroantimonate 12ac

Compound 12ac was prepared from azo compound $\mathbf{6 a c}(2.05 \mathrm{~g}$, $10 \mathrm{mmol})$ and methyl isothiocyanate $(1.10 \mathrm{~g}, 15 \mathrm{mmol})$ in the manner described for 12w. Title compound 12ac was obtained as a yellow powder ($3.28 \mathrm{~g}, 63 \%$), which was recrystallized at
$-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(5 \mathrm{ml})$ to furnish a yellow powder $(2.81 \mathrm{~g}$, 54%); mp 63-65 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 18.23; H, 2.93; N, 8.11. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}(\mathrm{MW}=520.8)$ requires C, 18.44; $\mathrm{H}, 3.09$; $\mathrm{N}, 8.06 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3193,1652$ (br, vs), 1552 (s); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 0.78(\mathrm{t}, J 7.3), 0.86(\mathrm{~d}, J 6.6), 1.21(\mathrm{~d}$, $J 6.7), 3.57\left(\mathrm{CH}_{3}\right), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})\left(\mathrm{CH}_{2}\right), 2.99$ (septet, $J 6.7, \mathrm{CH}$), 10.90 (br, NH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} \mathrm{CD}_{3} \mathrm{CN}\right.$) $8.8,18.1,20.0,30.5,37.6,38.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 136.6$ (C5), $188.9(\mathrm{C}=\mathrm{N})$.

Spiro[tricyclo[3.3.1.1 ${ }^{3,7}$]decane-2,2'-($2^{\prime}, 5^{\prime}$-dihydro-5'-isopropyl-imino- $\mathbf{1}^{\prime}, \mathbf{3}^{\prime}, 4^{\prime}$-thiadiazol-4-ium)] hexachloroantimonate 12ad
From azo compound $\mathbf{6 a d}(2.55 \mathrm{~g}, 10 \mathrm{mmol})$ and isopropyl isothiocyanate ($2.02 \mathrm{~g}, 20 \mathrm{mmol}$), title compound 12ad was obtained as a pale yellow powder ($4.86 \mathrm{~g}, 81 \%$), which was recrystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(9 \mathrm{ml})-\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ to furnish a powder ($4.26 \mathrm{~g}, 71 \%$); mp $208-210^{\circ} \mathrm{C}$ (decomp.) (Found: C, 28.22; H, 3.65; N, 6.65. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{SSb}$ ($\mathrm{MW}=$ 598.9) requires C, $28.08 ; \mathrm{H}, 3.70 ; \mathrm{N}, 7.02 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 3263, $1625(\mathrm{vs}), 1531(\mathrm{~m}) ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{3} \mathrm{CN}(2: 1)\right]$ 1.56 (d, J 6.5, 6 H), 1.91-2.77 (several m, 14 H), 4.00 (septet, $J 6.5, \mathrm{CH}), 8.86(\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left[62.9 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{3} \mathrm{CN}(2: 1)\right]$ 20.6, 27.0, 27.3, 36.8, 37.6, 39.0, 41.6, $58.1\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right)$, 136.5 (C5), 184.9 (C=N).

4,5-Dihydro-3,3-dimethyl-4-phenyl-3H-1,2,4-triazole-5-thione 13^{37}

Compound 13 was prepared from acetone 4-phenylthiosemicarbazone ($2.07 \mathrm{~g}, 10 \mathrm{mmol}$) according to the literature method. ${ }^{37}$ Pure orange prisms of title compound 13 were obtained in low yield ($0.27 \mathrm{~g}, 13 \%$); mp 167-168 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{37} 172-$ $\left.174{ }^{\circ} \mathrm{C}\right) ; \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}(\mathrm{MW}=205.3) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1503(\mathrm{~s})$, $1490(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.64\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15-7.60$ (several m, phenyl); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.5\left(\mathrm{CH}_{3}\right), 110.1$ (C5), 127.3, 129.7, 130.3, 134.8 (phenyl), 188.0 (C=S); EI-MS $m / z 177\left(\mathrm{M}-\mathrm{N}_{2}, 50 \%\right), 74\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{S}^{+}, 100 \%\right)$.

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and by the Deutsche Forschungsgemeinschaft. A fellowship was granted to Dr El-Gazar from the Arabic Republic of Egypt. We are grateful to Dr Armin Geyer who carried out several NMR experiments, to Dr Martin Lutz and Professor Dr Gerhard Müller for their discussions concerning the X-ray structural analyses, and to Mr Siegfried Herzberger for technical assistance.

References

1 1,3-Dipolar Cycloaddition Chemistry, A. Padwa, ed., vols. 1,2, Wiley, New York, 1984.
2 S. Parsons, J. Passmore, M. J. Schriver and X. Sun, Inorg. Chem., 1991, 30, 3342.
3 N. Burford, J. P. Johnson, J. Passmore, M. J. Schriver and P. S. White, J. Chem. Soc., Chem. Commun., 1986, 966.
4 S. W. Liblong, R. T. Oakley, A. W. Cordes and M. C. Noble, Can. J. Chem., 1983, 61, 2062.
5 M. Becke-Goehring and D. Schläfer, Z. Anorg. Allg. Chem., 1968, 356, 234.
6 W. Wirschun and J. C. Jochims, Synthesis, 1997, 233.
7 W. Wirschun, J. Prakt. Chem., 1998, 340, 300.
8 Q. Wang, J. C. Jochims, S. Köhlbrandt, L. Dahlenburg, M. Al-Talib, A. Hamed and A. E. Ismail, Synthesis, 1992, 710.

9 W. Wirschun, M. Winkler, K. Lutz and J. C. Jochims, J. Chem. Soc., Perkin Trans. 1, 1998, 1755.
10 Q. Wang, A. Amer, S. Mohr, E. Ertel and J. C. Jochims, Tetrahedron, 1993, 49, 9973.
11 Q. Wang, A. Amer, C. Troll, H. Fischer and J. C. Jochims, Chem. Ber., 1993, 126, 2519.
12 Q. Wang, S. Mohr and J. C. Jochims, Chem. Ber., 1994, 127, 947.

13 Y. A. Al-Soud, P. Bade Shrestha-Dawadi, M. Winkler, W. Wirschun and J. C. Jochims, J. Chem. Soc., Perkin Trans. 1, 1998, 3759.
14 N. Al-Masoudi, N. A. Hassan, Y. A. Al-Soud, P. Schmidt, A. M. Gaafar, M. Weng, S. Marino, A. Schoch, A. Amer and J. C. Jochims, J. Chem. Soc., Perkin Trans. 1, 1998, 947

15 N. A. Hassan, T. K. Mohamed, O. M. Abdel Hafez, M. Lutz, C. C. Karl, W. Wirschun, Y. A. Al-Soud and J. C. Jochims, J. Prakt. Chem., 1998, 340, 151.
16 M. W. Moon, J. Org. Chem., 1972, 37, 2005, and references therein.
17 R. N. Butler, D. C. Grogan, P. D. McDonald and L. A. Burke, J. Chem. Soc., Perkin Trans. 1, 1997, 3587.

18 P. W. West and J. Warkentin, J. Org. Chem., 1968, 33, 2089.
19 M. Kurihara and N. Yoda, Tetrahedron Lett., 1965, 6, 2597.
20 G. L'abbé, G. Verhelst, L. Haybrechts and S. Toppet, J. Heterocycl. Chem., 1977, 14, 515.
21 CCDC reference number 207/333. See http://www.rsc.org/suppdata/ pl/1999/1999 for crystallographic files in .cif format.
22 Q. Wang, M. Al-Talib and J. C. Jochims, Chem. Ber., 1994, 127, 541
23 F. Gstach and P. Seil, Synthesis, 1990, 1048, and references therein.
24 R. T. Kroemer, H. Gstach, K. R. Liedl and B. M. Rode, J. Am. Chem. Soc., 1994, 116, 6277.
25 R. T. Kroemer, H. Gstach, K. R. Liedl and B. M. Rode, J. Chem. Soc., Perkin Trans. 2, 1994, 2129.
26 P. J. Kothari, V. I. Stenberg, S. P. Singh and S. S. Parmar, Spectrosc. Lett., 1978, 11, 979.
27 P. J. Kothari, V. I. Stenberg, S. P. Singh, S. S. Parmar and R. W. Zoellner, J. Heterocycl. Chem., 1980, 17, 637.
28 G. M. Shutske and M. N. Agnew, J. Heterocycl. Chem., 1981, 18, 1025.

29 T. Somorai, P. Dvortsák, J. Langó and J. Reiter, Acta Chim. Hung., 1983, 114, 23.

30 B. Mester, R. M. Claramunt and J. Elguero, Magn. Reson. Chem., 1987, 25, 737.
31 Y. Guo, Q. Wang and J. C. Jochims, Synthesis, 1996, 274.
32 M. W. Majchrzak, E. Jefferson and J. Warkentin, J. Am. Chem. Soc., 1990, 112, 2449.
33 E. A. Jefferson and J. Warkentin, J. Am. Chem. Soc., 1992, 114, 6318.

34 E. A. Jefferson and J. Warkentin, J. Org. Chem., 1994, 59, 455
35 E. A. Jefferson and J. Warkentin, J. Org. Chem., 1994, 59, 463.
36 G. Mloston, M. Petit, A. Linden and H. Heimgartner, Helv. Chim. Acta, 1994, 77, 435.
37 J. K. Landquist, J. Chem. Soc. (C), 1970, 63
38 R. Duschinsky and H. Gainer, J. Am. Chem. Soc., 1951, 73, 4464.
39 K. Fujioka, K. Fukuyama, T. Tsukihara, Y. Katsube and I. Yamamoto, Tottori Daigaku Kogkubu Kenkyu Hokuku, 1984, 15, 44; Chem. Abstr., 1985, 102, 184473k.
40 R. Faggiani, M. Kaminski, C. J. L. Lock and J. Warkentin, Can. J. Chem., 1987, 65, 1154
41 A. F. Hegarty, M. T. McCormack, G. Ferguson and P. J. Roberts, J. Am. Chem. Soc., 1977, 99, 2051.

42 A. F. Hegarty, Acc. Chem. Res., 1980, 13, 448.
43 W. Walter and C. O. Meese, Chem. Ber., 1977, 110, 2463.
44 G. M. Sheldrick, SHELXL-93, University of Göttingen, 1993.
45 G. M. Sheldrick, Siemens SHELXTL Plus, University of Göttingen, 1976 and 1983.
46 M. J. Mintz and C. Walling, Org. Synth., Coll. Vol. V, Wiley, New York, 1973, p. 184.

